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BISTATIC STAP FOR ATRBORNE RADAR SYSTEMS

Stephen M. Kogon and Michael A. Zatman

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108
kogon@ll.mit.edu,zatman@ll.mit.edu

ABSTRACT

One of the major challenges to an airborne bistatic radar
system is the mitigation of ground clutter returns using space-
time adaptive processing (STAP) to enable the detection of mov-
ing targets. Unlike the monostatic case, the relationship between
Doppler frequency and cone angle of clutter is very complicated
in an airborne bistatic radar due to the independent motions of
the transmitter and receiver. This complex relationship leads to
clutter that is non-stationary in range and not always easily com-
pensated for as is possible in monostatic systems. Effective im-
plementation of STAP relies on the availablity of sufficient ho-
mogeneous training data to estimate the adaptive weights. A fun-
damental issue for bistatic STAP is the non-stationary nature in
range of bistatic clutter and its impact on adaptive weight train-
ing. In this paper, we look at two different approaches to bistatic
STAP, Doppler warping and derivative-based updating, that at-
tempt to account for the non-stationary nature of bistatic clutter.
The performance of these methods is contrasted for a bistatic
scenario and limitations on the ability of STAP to cancel clutter
are quantified.

1. INTRODUCTION

Space-time adaptive processing (STAP) for an airborne radar uses
aseries of pulses along with an array of sensors to mitigate ground
clutter returns. Through an extensive research effort, STAP has
evolved from initial theoretical studies to a fairly mature field that
can be implemented in real-time systems [1, 2, 3]. The realization
of STAP into actual military systems is made possible not only by
advances in processor technology but also by the development of
efficient algorithms and effective training strategies to compute the
adaptive STAP weights. In this context, a series of non-adaptive
processing steps lead to an elegant STAP solution that computes a
single set of adaptive weights that are applied to radar returns from
all range gates. To date, STAP research has focused on monos-
tatic sytems for which the transmitter and receiver have a common
platform. Many future systems, however, are considering bistatic
operation [4, 5, 6]. A major obstacle for these bistatic systems is
the cancellation of bistatic clutter.

Bistatic radars, ones in which the transmitter and receiver are
not co-located, have been considered since the first deployments
of radar systems {7]. These systems offer several advantages over

This work was supported by DARPA under Air Force Contract
#F19628-95-C-0002. Opinions, interpretations, conclusions and recom-
mendations are those of the authors and are not necessarily endorsed by
the United States Air Force.

their monostatic counterparts, including an extended detection range
achieved by placing the receive platform in close proximity to an
area of interest without having to risk easy detection since the
receiver is passive. However, the complicated nature of bistatic
clutter discourages the use of a bistatic radar in airborne systems
for moving target indication (MTI). In particular, the separate mo-
tion of the transmitter and receiver creates two sources of Doppler
for bistatic clutter. The resulting iso-Doppler relationship is non-
stationary in range and difficult to compensate for with monostatic
STAP techniques {8]. Since the characteristics of bistatic clutter
are strongly dependent on the geometry between the transmitter
and receiver, it is important to develop robust clutter cancella-
tion techniques and to understand and quantify favorable transmit-
ter/receiver configurations.

The adaptive weights used by STAP must be computed us-
ing a clutter-plus-noise sample covariance matrix estimated from
data samples collected over range. The ability to obtain an accu-
rate estimate of the covariance matrix relies on the availability of
sufficient training data with the same characteristics. Though the
clutter power may be nonhomogeneous in range, the crucial re-
quirement is that the angle/Doppler relationship be approximately
constant over range. This requirement means that the locus of clut-
ter energy in angle/Doppler space, known as the clutter ridge, be
constant over range. For a monostatic airborne radar, clutter is
stationary in range when the velocity of the platform is aligned
with the array. For cases when this condition is violated, a tech-
nique known as Doppler warping can be employed to realign the
clutter ridge and make it approximately stationary in range for a
uniform linear array [8]. This compensation is made possible by
the fact that clutter Doppler and cone angle have a common refer-
ence point, the transmitter/receiver platform. In the case of bistatic
systems, clutter has two independent sources of Doppler due to the
separate motion of the transmitter and receiver. The cone angles of
clutter, however, are measured with respect to the array on the re-
ceiver platform. The result of the independent transmitter Doppler
produced by another platform is rapid variation of clutter in range
that is not so easily compensated for.

Bistatic STAP requires that either compensation prior to STAP
be performed or the adaptive weights vary with range in order to
effectively mitigate the non-stationary clutter. As we will see, the
variation of bistatic clutter is so rapid that both approaches are lim-
ited to smaller range extents, thus, limiting the amount of training
data available. This paper begins with a characterization of bistatic
clutter in Section 2. Here, we describe the angle/Doppler relation-
ships of a specific scenario and demonstrate the rapid variation
of bistatic clutter in range as contrasted with monostatic clutter.
Next, in Section 3, we study the performance of STAP when train-




ing is done ignoring the non-stationarity and also when Doppler
warping is employed. Section 4 describes range-varying STAP
weights adapted using a technique known as derivative-based up-
dating. The performance of derivative-based updating is compared
with the methods from Section 3. All results are theoretical using
ideal covariance matrices averaged across the training interval.

2. BISTATIC CLUTTER

Bistatic clutter refers to the ground reflections of the transmitted
waveform as seen by the receiver in a bistatic system. In order to
better understand the performance of STAP , it is useful to study
the characteristics of bistatic clutter. We start by reviewing clutter
in a2 monostatic system and the characteristics that allow it to be
effectively cancelled using STAP. The monostatic scenario is con-
trasted with two bistatic scenarios, one with a stationary transmit-
ter and one with 2 moving transmitter. The characteristics of the
resulting bistatic clutter are then studied, particularly those that
are crucial to STAP. Throughout this discussion, we focus on 2
uniform linear array (ULA) with a radar operating frequency of
f = 435 MHz, a frequency used for previous STAP analyses [1].
Altitudes of the airborne radar platforms are 10 km.

In the case of a monostatic airborne radar, the clutter Doppler
is related to the cone angle between the clutter on the ground and
the receiver/transmitter ¢y and is given by

2v;
fa=FE cos gt )
where vy is the radar platform velocity and ) is the radar wave-
length. Likewise, the spatial frequency for the ULA is determined
by the cone angle of the clutter patch with respect to the array ¢,
and is given by
w=2cosg @
where d is the inter-element spacing of the ULA. Since both the
ULA and the platform velocity have the same point of reference,
i.e., the receiver/transmitter, the two cone angles are related by

&rt = Pa + Pmis €))

where @mis is the misalignment angle between the array and the
platform velocity, which can be caused by crab in the case of
the aircraft heading altered by strong winds or by a rotating ar-
ray. A plot of the Doppler frequencies of an area on the ground is
shown in Fig. 1. The black lines correspond to contours of con-
stant array cone angle and the gray lines correspond to contours
of constant range. In this example, the platform velocity of the
receiver/transmitter platform is v,y = 100 m/sec, its location is
(0 km, 0 km) and the array is aligned with the platform velocity
vector (¢mis = 0°). As we can see from Fig. 1, each iso-cone
angle contour of the array perfectly aligns with a constant Doppler
frequency, known as an iso-Doppler contour.

The clutter ridge for each range can be constructed by plot-
ting the clutter Doppler frequency as a function of cone angle. A
plot of clutter ridges at ranges of 25 km, 50 km and 100 km is
shown in Fig. 2. All of these clutter ridges lie on the same lo-
cus in angle/Doppler space, independent of range. Thus, clutter
is stationary in range. As a result, STAP can use a common set of
weights for all range cells. Not only is the use of a common weight
across all range cells desirable from a computational point of view
since a different set of weights does not need to be computed for
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Figure 1: Clutter Doppler frequency of a monostatic airborne
radar located at (0 km, 0 km) moving north at vy, = 100 m/sec
with iso-cone angle (black) and iso-range contours (gray).
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Figure 2: Monostatic clutter ridges for the scenario from Fig. 1
at two-way ranges of 25 km (solid), 50 km (dash-dot) and 100 km
(dashed). All three clutter ridges overlap each other.
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Figure 3: Bistatic clutter Doppler frequency with a stationary
(ground-based) transmitter at (100 km, 0 km) and a receiver at
(-100 km, 0 km) moving north at v, = 100 m/sec, with iso-cone
angle (black) and iso-range contours (gray).
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Figure 4: Bistatic clutter ridges for the scenario from Fxf 3 witha
stationary transmitter at bistatic ranges of 225 km (solid), 250 km
(da;h—drc’)t), and 300 km (dashed). All three clutter ridges overlap
each other.

every tange cell, but also the STAP algorithm has an abundance
of training cells to compute the adaptive weights. Since all range
cells share the same clutter locus, all range cells can be used for
STAP weight training. In the case of an array that is misaligned
with the velocity vector (¢mis # 0°), iso-Dopplers will not align
with iso-cone angles, particularly at short ranges. However, an effi-
cient very effective transformation exists, known as Doppler warp-
ing [8], that produces a range-dependent Doppler shift to align the
clutter in angle/Doppler space for a ULA. Doppler warping will
be discussed in more detail in Section 3.

Bistatic clutter is somewhat more complicated due to the in-
dependent motion of both the transmitter and receiver. Bistatic
Doppler is given by

Ur

3, Cos ¢ @

fa= o cos ¢ +
A

where v and v, are the transmitter and receiver velocities, respec-
tively. ¢ and ¢, are the cone angles of the clutter patch with re-
spect to the transmitter and receiver headings. Note that in the case
of a stationary transmitter (v = 0), bistatic Doppler has exactly
the same form as monostatic clutter except that the factor of two is
gone since the only motion is due to the receiver and not both the
receiver and transmitter as is the monostatic case.

Anexample of bistatic Doppler with a stationary, ground-based
transmitter at the point (100 km, 0 km) and a receiver at (-100
km, 0 km) with its array aligned with the platform velocity vector
(#mis = 0°) is shown in Fig. 3. In this case, as in the monostatic
case, all of the Doppler is due to the motion of one platform. The
similarity to the monostatic case is evident as we can see that each
iso-cone angle of the ULA has a constant Doppler for all range
and thus aligns with an iso-Doppler contour. The bistatic clutter
ridges are stationary in range as can be seen in Fig. 4 for the clut-
ter ridges at bistatic ranges of 225 km, 250 km and 300 km. Note
that the minimum bistatic range is approximately 201 km. In this
case, STAP clutter mitigation simply reverts to 2 “monostatic-like”
problem for which all of the methods that have been successfully
demonstrated for monostatic STAP [2, 3] can also be applied.
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Figure 5: Bistatic clutter Doppler frequency with a transmitter at
(100 km, 0 km) moving southeast at vy = 100 m/sec and a receiver
at (-100 km, 0 km) moving north at v, = 100 m/sec with the ar-
ray misaligned with the platform velocity vector by ¢mis = 35° .
Iso-cone angle contours are indicated in black and iso-range con-
tours in gray.

The nature of bistatic clutter, however, changes dramatically
when the transmitter is in motion. In this case, bistatic Doppler
has two, independent sources: the transmitter motion and the re-
ceiver motion. An example of bistatic Doppler is shown in Fig.
5 in which the receiver at (-100 km, O km) is heading north and
the transmitter at (100 km, 0 km) is heading southwest, both with
a velocity of 100 m/sec. Though the Doppler exhibits the ex-
pected characteristics of large, positive values in front of both the
receiver and transmitter and negative values behind the headings
of the platforms, the characteristics of the bistatic clutter are quite
complicated. As can be seen by the overlaying iso-range con-
tours (gray lines) and iso-cone angle contours (black lines), the
bistatic Doppler along an iso-cone angle contour changes dramat-
ically with range. When we examine the resulting clutter ridges in
Fig. 6 at bistatic ranges of 225 km, 250 km and 300 km, we see a
very complicated structure. Unlike the cases of a monostatic radar
or bistatic radar with a stationary transmitter, the independent mo-
tion of the transmitter is produced from a different reference point
than the array cone angles. Thus, the resulting bistatic Doppler
cannot be easily aligned with the iso-cone angles of the array on
the receiver platform. Examining Fig. 6, we see that the clutter
ridges actually intersect and vary dramatically even over a very
short range. This rapid variation with range has implications in
terms of STAP training as will be discussed in the next section.

3. PERFORMANCE OF BISTATIC STAP

Bistatic clutter presents a very challenging problem to STAP due
to its complex, non-stationarity in range. Two approaches can
be adopted to attempt to cope with the variation in range: a pri-
ori transformation prior to STAP or range-varying STAP weights.
Range-varying STAP weights raise several issues, including the
availability of sufficient training data as well as computational com-
plexity. A method that incorporates range-varying STAP weights
will be discussed in Section 4. In this section, we examine the
performance of STAP for which a STAP weight is computed by
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Figure 6: Bistatic clutter ridges for the scenario from Fig. 3
?éals);lstg;ac ranges of 225 (solid), 250 (dash-dot), and 300 km
ed).

averaging over a range interval with and without an a priori trans-
formation.

The optimum STAP weight vector emphasizes target signals
from an angle ¢ and Doppler frequency f; while rejecting all
other significant energy. The optimum STAP weights for range
cell n are given by

Wopt (1) =R ()™ vy )

whereR (n) = E { x (n) x¥ (n)} is the clutter-plus-noise covari-
ance matrix at range cell n. The ‘space-time steering vector vy is
the Kronecker product of the spatial steering vector a (¢¢) and the
Doppler steering vector b ( f;)

Ve =V (¢, ;) =b(f:) ®a(ss) (6

where both a and b are Vandermonde steering vectors [1] and ¢
is the presumed target angle with respect to the ULA that deter-
mines the spatial frequency as in (2) and f; is the presumed target
Doppler. Of course, this optimum STAP weight vector presumes
knowledge of R (n) and, therefore, serves as an upper bound on
the performance for any STAP weight that is obtained by estimat-
ing the clutter statistics from the data.

A common performance metric for STAP is the loss incurred
due to the presence of interference, known as signal-to-interference-
plus-noise ratio (SINR) loss. In the context of clutter mitigation,
this quantity is a measure of the loss due to the presence of clutter
and is typically evaluated for a single angle for all unambiguous
target velocities. The resulting SINR loss curve then gives an indi-
cation of the performance in terms of minimum detectable velocity
(MDV) for a specified, maximum tolerable SINR loss. For an ar-
bitrary STAP weight vector w, SINR loss is given by

SINR

SNR, )
IWHVt |2

[WHR (n) w] - [v{ vi]

where R (n) is the true covariance matrix at range cell n. SINR

loss has a maximum value of unity, which indicates that perfor-
mance is not impacted by clutter, and a minimum value equal to

Lsinr =

the clutter-to-noise ratio for zero velocity targets. Theoretically,
optimum or ideal performance is obtained when the STAP weight
vector is equal to the optimum weights from (5).

In practice, the STAP weights are obtained by estimating the
clutter-plus-noise covariance matrix from space-time data snap-
shots. The sample covariance matrix is given by

K
B(n) = 2 3 x(m)x” (me) ®
k=1

where the indices ny define the K range gates that comprise the
STAP training set. Note that we have not placed any presumptions
on how these range gates are chosen. In this analysis, we con-
sider strategies that compute the sample covariance matrix using
K snapshots centered about, but excluding, the range cell n. The
range cell of interest n is typically not included in training to pre-
vent target cancellation or self-nulling. To model this covariance
matrix computed from data snapshots over the range interval cen-
tered about range n, we can average the true covariances at each
range gate over this range interval

R()= 23S R() ©
k

forn — £51 Sk<n+Elfork #n.

Clutter that is non-stationary in range has a clutter ridge that
varies its location in angle/Doppler over range. One can attempt
to align the clutter ridges using a range-dependent transformation
to the data prior to STAP. One such method is known as Doppler
warping [8]. This method takes each range and applies a Doppler
shift to align the clutter ridge at a common Doppler frequency for
a given angle, e.g., array broadside. If the clutter ridge has a sim-
ilar shape but is only displaced in Doppler over range, then this
Doppler shift will realign the clutter ridge for all ranges. Though
this will perfectly align the clutter ridge at one angle, for other
angles the alignment is only approximate. For more details, see
[8]. Doppler warping incorporates a Doppler shift by producing a
phase ramp across pulses which can be formulated using the trans-
formation matrix

T, = [1 P23 L CO NN ejz’f(b—l)fw(ﬂ)] ®1 (10)

where f, () is the Doppler shift for range gate n and L is the total
number of pulses in the CPI. The M x M identity matrix in (10)
simply means that the same transformation is applied to all M ele-
ments of the ULA. The transformation or Doppler warping matrix
T simply applies a phase ramp across pulses to Doppler shift
the entire data snapshot for range gate n. The resulting Doppler
warped output at range gate n is

Xw (1) = TH (n)x (n) . (11)

Likewise, the covariance matrix for range gate n following Doppler
warping is given by

Ry (n) = Ty R (n) Tw . (12)

The performance of STAP obtained while training over a spec-
ified range extent is contrasted for the cases of with and without
Doppler warping. We consider the same scenario from Figs. 5and
6 with a receiver platform heading north at v; = 100 m/sec and a
transmitter traveling southwest at vy = 100 m/sec, with both plat-
forms at an altitude of 10 km. The radar frequency is 435 MHz,
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Figure 7: SINR loss vs. target velocity for the bistatic clutter

scenario in Fig. 5 for training over a 12 km training region without

any compensation (dash-dot) and with Do%pler warping (dashed)
compared to ideal STAP performance (solid).

the bandwidth is 5 MHz, the ULA has M = 18 elements with
A/2 spacing, the PRF is 300 Hz, and the CPI length is 18 pulses.
Note that these parameters are the same ones used in the STAP
analysis in [1] and are also very similar to those used in the Moun-
taintop experiment [9]. The SINR loss of STAP with and without
Doppler warping is shown in Fig. 7 for a range training interval of
12 km. Although, Doppler warping improves STAP performance
significantly, the SINR loss with Doppler warping is still consider-
ably worse than in the ideal case. Clearly, the width of the null at
zero velocity widens appreciably indicating an increase in the min-
imum detectable velocity (MDV). Examining the clutter ridges for
this scenario in Fig. 6, we see that for the different ranges not only
do the clutter ridges vary in range but their shape changes as well.
Thus, Doppler warping, which comrectly focuses to one point on
the clutter ridge, can only properly correct this point. The other
portions of the clutter ridge are still misaligned and cause the in-
crease in MDV in the SINR loss.

4. DERIVATIVE-BASED UPDATING FOR BISTATIC
STAP

Another approach that addresses the non-stationary clutter found
in an airborne bistatic radar is to compute updated STAP weights
for each range gate. A variety of criterion can be used to estimate
the varying STAP weights including dynamic adaptive techniques
such as least mean-square (LMS) or recursive least squares (RLS)
adaptive weights that are updated for every sample. Another ap-
proach is to use an entire interval of K + 1 range gates centered at
range gate n to compute a range-varying STAP weight across the
interval. The range-varying STAP weights can be rewritten as a
Taylor series expansion. This expansion can be approximated us-
ing only the first-order derivative provided the higher order terms
are negligible. The result, known as derivative-based updating
(DBU), can be written as a linearly range-varying weight vector
{10]

w (k) = wo + kwo 13)

where wo = w (n) and wo = W (n) are the weight vector and
derivative of the STAP weight vector at k = n, i.e., the center of
the training interval. A brief sketch of the computation of DBU-
STAP weights is given below followed by the results of the ap-
plication of DBU-STAP to the bistatic clutter mitigation example
examined in the previous section.

The output of DBU-STAP is obtained by applying the range-
varying weight vector from (13) to the nth STAP data snapshot
(training range gate)

y (k) w? (k) x (k) (14)

= wi¥x(k)+kw x(k)

- (=] [a%)]
- Wo kx (k)
= W’Hi(k)

where % (k) is the augmented data vector and W is the augmented
STAP weight vector. Note that W is constant for all k. Rather
the augmented data vector absorbs the varying component. The
sample covariance matrix of the augmented data vector is com-
puted by substituting % (k) into the sample covariance computa-
tion in (8) where the training indices correspond to the interval
n—%z1 <k < n+ X7 for k # n. This sample covari-
ance matrix can be modeled by substituting the true range-varying
covariance matrix at each range gate

= 1 R(k) KR(k)
R= EE‘; [ KR(K) KR(K) | (15)
The resulting DBU-STAP weight vector is then found to be
__ | wo | _g-1]| v(ge, fe)
W= [ Wo ] =R [ 0 . (16)

Note that the degrees of freedom for the DBU-STAP weights is
now twice that of the other STAP methods considered, since both
the weights and their first-order derivative have to be computed at
range 1. For more details see [10, 11]. A performance analysis of
the DBU algorithm is given in [11].

The DBU-STAP weights are applied to the bistatic clutter sce-
nario presented in Section 3. Again, the STAP training region is 12
km. The DBU-STAP performance is compared to a constant STAP
weight with Doppler warping, as well as the ideal performance for
the case in which the bistatic clutter covariance matrix is known.
The results are shown in Fig. 8. The DBU-STAP performance
almost perfectly matches the ideal STAP performance had the co-
variance matrix been known. Thus, the first-order approximation
in the DBU algorithm holds over this 12 km training region for the
given scenario. Next, we look to extend the training region to see
over how large a region the DBU-STAP weight approximation is
valid. These results are shown in Fig. 9 for training regions of 20
km, 60 km, and 90 km which are also compared to the ideal STAP
performance. For training regions up to 60 km, the DBU-STAP
performance is very close to ideal though the width of the SINR
loss notch grows as the training region is increased due to the first-
order approximation of the DBU-STAP weights. Once the training
region is extended to 90 km, however, a significant degradation is
seen in the form of an additional notch in the SINR loss. Although
all of these results are very much geometry dependent, the notion
of a range-varying STAP weight shows significant promise and for
the scenario considered here provides a significant performance
gain.
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Figure 8: Bistatic STAP performance in terms of SINR loss vs.
target velocity for scenario in Fig. 5 using a 12 km training inter-
val comgaring derivative-based updating (dots) to Doppler warp-
ing (dashed), and the ideal performance (solid).
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Figure 9: Bistatic STAP performance of derivative-based updat-
ing as a function of range training interval size in terms of SINR
loss vs. target velocity. The STAP training intervals used are 20
km (dots), 60 km (dashed) and 90 km (dash-dot). Performance is
compared to ideal STAP (solid).

§. SUMMARY

The mitigation of bistatic clutter presents a new and challenging
problem to the STAP community. The angle/Doppler relationship
of bistatic clutter can be be very complex and non-stationary in
range for an airborne transmitter. This complex relationship arises
from the fact that the transmitter introduces a second source of
Doppler that is independent of the receiver platform from which
the array cone angles are measured. In the absence of transmit-
ter motion, e.g., a ground-based transmitter, successful mitigation
of bistatic clutter can be accomplished using traditional STAP ap-
proaches developed for monostatic radar. For a moving transmit-
ter, however, bistatic STAP must be able to cope with the rapid
variation in range of clutter. Doppler warping, though it improved
STAP performance, cannot restore ideal performance. Derivative-
based updating shows promise in terms of achieving near ideal
performance over a larger range extent at the expense of increas-
ing the adaptive degrees of freedom by a factor of two.
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ABSTRACT

Practical STAP implementations rely on reduced-dimension pro-
cessing, using techniques such as principle components or partially
adaptive filters. The dimension reduction not only decreases the
computational load, it also reduces the sample support required
for estimating the interference statistics. This results because the
clutter covariance is implicitly assumed to possess a certain (non-
parametric) structure. In this paper, we demonstrate how impos-
ing a parametric structure on the clutter and jamming can lead
to a further reduction in both computation and secondary sample
support. Our approach, referred to as Space-Time AutoRegressive
(STAR) filtering, is applied in two steps: First, a structured sub-
space orthogonal to that in which the clutter and interference re-
side is found; Second, a detector matched to this subspace is used
to determine whether or not a target is present. Using a realistic
simulated data set for circular array STAP, we demonstrate that this
approach achieves significantly lower SINR loss with a computa-
tional load that is less than that required by the reduced-dimension
PRI-staggered STAP method. The STAR algorithm also yields ex-
cellent performance with very small secondary sample support, a
feature that is particularly attractive for circular array STAP where
the clutter statistics are range dependent.

1. INTRODUCTION

The use of fully adaptive space-time adaptive processing (STAP)
[1, 2] is prohibitive in most radar applications due to the computa-
tional cost and the large number of secondary data vectors required
to accumulate the second-order statistics of the clutter and inter-
ference. The latter is particularly a problem when using a circular
array, since the clutter statistics are non-stationary at close range
[3]. One approach to mitigating this problem is to use so-called
“partially adaptive” STAP filters [1, 2], which, for example, employ
beamspace techniques or pre-Doppler filtering to reduce the num-
ber of degrees of freedom available for adaptation. The dimension
reduction serves not only to reduce computation, it also reduces the
sample support required for estimating the clutter and interference
statistics.

In this paper, we present an alternative approach to clutter and
interference suppression that relies on the use of vector autoregres-
sive (AR) modeling. The use of vector AR models for radar clut-
ter has been previously proposed in [4]. These models have been

This work was supported by the Office of Naval Research under con-
tract N00014-99-1-0692.

employed in developing generalized likelihood ratio and matched-
filter based detectors for both Gaussian and non-Gaussian interfer-
ence {5, 6, 7, 8]. In the algorithm presented here, we use a vector
AR model estimated from the secondary data to construct a struc-
tured subspace that is as orthogonal to the clutter and interference
subspace as possible. Instead of using the inverse of the clutter co-
variance matrix to whiten the primary data vector as in the fully
adaptive STAP method, we project out the estimated interference
subspace prior to beamforming and Doppler filtering. This ap-
proach, which we refer to as Space-Time AutoRegressive (STAR)
filtering, can be thought of as an adaptive implementation of the
matched subspace detector described in [9]. As we will see, there
are two important advantages to the STAR method:

1. The computation involved in calculating the vector AR model,
forming the projection matrix, and applying the projection
to the primary data vector is significantly less than the cor-
responding steps not only for fully adaptive STAP, but for
the partially adaptive methods as well.

2. The amount of secondary data required to reliably estimate
the STAR model is considerably less than that required for
estimating the covariance matrices used in either the fully
adaptive or partially adaptive algorithms. This not only helps
reduce computation, but it reduces the secondary data inter-
val over which we require stationarity.

The advantages listed above will be illustrated by means of a
synthetic data set generated by MIT Lincoln Laboratories that sim-
ulates the output of a 20 element antenna array whose elements lie
along a circular arc of 120° [3]. Circular array geometries are cur-
rently being considered for use in airborne surveillance radars since
they can electronically scan the full 360° surroundings in much less
time than a mechanically steered array. An experimental circular
array is currently being developed by Raytheon as part of the UHF
Electronically Scanned Array (UESA) program sponsored by the
Office of Naval Research. The array is composed of 60 directional
elements evenly spaced around the edge of the circular aperture,
but nominally only 20 are used at any given time for transmit and
receive. The use of this type of array geometry is especially reveal-
ing for the topic of this paper, since the locus of the clutter ridge in
the cone angle/Doppler space is non-stationary, especially at close
range. This effect tends to increase the rank of the clutter covari-
ance matrix, which in turn means that more secondary data vectors
are required to estimate the clutter statistics. The non-stationarity
of the clutter makes this very difficult to achieve. The ability of the
STAR method to obtain a solution with minimal secondary sample




support makes it extremely attractive for the circular array STAP
problem. Similar improvements in performance are also seen in
the more easily handled case involving a linear array.

In the next section, we present the standard data model assumed
for STAP problems and develop the notation we will use through-
out the paper. The STAR filtering technique is outlined in Section 3,
along with a detailed computational count and a description of how
the model order is selected. The results of a series of numerical
experiments comparing the STAR approach to standard STAP al-
gorithms are presented in Section 4.

2. MATHEMATICAL MODEL

A target present in a particular range bin during some CPI (coherent
processing interval) may be modeled as producing the following
baseband vector signal (after pulse compression and demodulation)

[11:
x(t) = ba(@)e’* +n(t) e €™, t=1,---,N, (1)

where b is the complex amplitude of the signal, w is the Doppler
shift due to the relative motion between the array platform and
the target, a(f) is the response of the array to a unit amplitude
plane wave arriving from direction § (azimuth and elevation an-
gles), and n(¢) contains contributions from clutter, jamming, and
thermal noise. In (1), we are assuming an array of m elements and
a total of IV transmitted pulses.

If we stack the N array outputs into a single mN x 1 space-
time snapshot, we may re-write (1) as

x(1)

X = : =bv(f,w)+7, 2)
x(N)
where

s(6,w) = v(w) ® a(f)

viw)=[16€" ... ej(N'l)“’]T

and ® represents the Kronecker product. The vector 7} contains the
stacked vector samples of the clutter and interference, and has an
unknown covariance matrix denoted by

Emm}=R.

The clutter is neither temporally nor spatially white; in fact, the
rank of R is typically much less than mN. According to Bren-
nan’s rule [10], the rank (p) of R for a uniform linear array is
m + (N — 1)B, where 3 is a factor that depends on the speed
of the array platform and the pulse repetition frequency (PRF), and
is usually between 0.5 and 1.5. No corresponding expression ex-
ists for a circular arc array like the one described above, but p has
been observed to be typically about a factor of two greater than that
predicted by Brennan’s rule. The rank of R is important because
it determines how many secondary data samples are required to ac-
curately estimate it when it is unknown. According to [1 1], the
number of required samples is on the order of 2pto 5p.

The term STAP is used to refer to the “adaptive™ (i.e., data de-
pendent) calculation of a space-time weight vector or beamformer
w(f,w) that is applied to ¢ to create a two-dimensional angle-
Doppler spectrum:

P(6,w) = |w"(6,w)x|* .

In fully adaptive STAP, the weight vector is chosen to maximize
the signal-to-interference plus noise ratio (SINR), which yields the
well known solution

wra(f,w) =R 's(0,w) . 3)

Since R. is not known a priori, it is replaced by a sample average
R:

P
R=Y xxi, @
k=1

where x; is a secondary data vector from a different (target-free)
range bin. As mentioned above, P > 2p is desired, but a larger
value for P means that the clutter must be considered to be station-
ary over a longer interval.

The size and ill-conditioning of R (or f{.) make calculation of
the inverse in (3) prohibitive, and thus the fully adaptive method is
rarely implemented directly. Diagonal loading or principle compo-
nents are often used to eliminate numerical problems in calculat-
ing the optimal weight vector. Also popular are partially adaptive
STAP methods that use pre-processing to reduce the dimension of
the data. The dimension reduction not only improves the numerical
conditioning, but it reduces the required secondary sample support
and decreases the computational load as well. In essence, these
techniques impose certain structural constraints on R to reduce the
number of degrees of freedom that must be estimated from the data
to perform the required space-time filtering. In the next section,
we present an alternative way to impose structure on the subspace
spanned by the clutter and interference. We will see that the pro-
posed technique enjoys significant advantages over standard STAP
algorithms.

3. SPACE-TIME AUTOREGRESSIVE FILTERING

In the approach presented here, we postulate the existence of a set

of L matrices Ho, Hi, - - - , H _; of dimension m’ x m that satisfy
L-1
S Hmn(t+i)=0, t=1,---,N—L+1, )
i=0

for the interference and clutter in the primary range bin'. We may
also write (5) in the following two different ways:

n(1) n(N—-L+1)
Ho --- Hr]| | : =0 (©
He n(L) n(N)
N
or
H'n=0, @)
where
Ho --- Hp_,
. He --- H;_,
H = . . . (®
Ho .- H;_,

Note that we do not require one of the matrix taps to be the identity
since the clutter is not spatially white, and we have observed much better
performance without this constraint,




We assume that equations (6) and (7) also hold for the secondary
data as well:

H'N; =0 ©
Hn =0, (10)

fork =1,---, P, where Ny is formed from 9, as in (6).

The matrix H is mN x m'(N — L + 1). If (5) holds and
m' and L are chosen so that m' (N — L + 1) is large enough, the
columns of H form a basis for the space orthogonal to the clutter
and interference subspace. This suggests the use of the following
space-time filter as an alternative to (3):

WAR(07w) = P'Hs(oﬂw) ’ (1 1)
where Py is the projection onto the columns of H:
Pu=HHH H . 12)

We refer to the implementation of STAP with the weight vector
of (11) as Space-Time AutoRegressive (STAR) filtering. The STAR
filter weights are still “adaptive” in the sense that H must be esti-
mated from the secondary data prior to computation of Wwar. A
procedure for calculating # is outlined below.

3.1. Algorithm Implementation

The mL x m' matrix of coefficients H completely specifies H.
If (5) holds, then using (10) we see that H could be found as the
left nullspace of the mL x P(N — L + 1) matrix

N =|[N; --- Np], 13)

provided that .
m

P2 N-L+1°
Since (5) will not hold exactly in practice (due, for example, to
the presence of thermal white noise), NV is generically full rank.
Consequently, we choose H as the m’ left singular vectors of N
with the smallest singular values. The computation involved in this
step is O (m?*L*P(N — L + 1)) flops.

Once H is found, we proceed to the calculation of P4, X, which
is used in forming the 2-D STAR spectrum:

Par(8,w) =1s"(8,w)Pux|® . (14)

A statistic of the form (14) is referred to as a matched subspace de-
tector, following the development of [9]. Implementation of (14)
is considerably simplified by the block Toeplitz structure of H.
In particular, the inverse (HH*)™? required for Py is much less
costly to implement than its dimension would suggest due to the
fact that, for typical values of m' and L, HH" is a sparse banded
block Toeplitz matrix. Taking this and the structure involved in
the matrix product #Hx into account, calculation of Pz x requires
O (m'm?L*(N — L + 1)) flops. With P3x in hand, the calcula-
tion of Par(6,w) has negligible cost compared with the first two
steps, especially since the FFT can be used for at least the w di-
mension (and the § dimension as well if the array is uniform and
linear).

For the following typical parameter values encountered when

implementing the algorithm for the circular array data: m = 20, N =

18, L = 3, and m' = 15, the computational order of the STAR fil-
tering algorithm is

STAR = O(5.8 x 10*N,) + O(8.6 x 10°) .

Compare this with the cost of fully adaptive STAP (using a princi-
ple components implementation):

Fully Adaptive = O(m>N%N;) + O(pm*N?)
= O(1.3 x 10°N,) + 0(9.7 x 10°) ,

where we have assumed a nominal clutter rank of p = 75 (cor-
responding to roughly twice Brennan’s rule). As an example of a
partially adaptive method, the PRI-staggered post-Doppler STAP
algorithm [10] has a computational cost of

PRI Staggered = O(m?*N2K2N,) + O(pxm*K*N?)
= 0(6.5 x 10*N;) + 0(2.9 x 10°) ,

where K is the number of sub-CPIs (assumed to be three for the
numerical values) and px is the rank of the sub-CPI covariance
matrix (assumed to be nominally equal to 45). When all algorithms
use the same number of secondary vectors, the computational sav-
ings of the STAR approach over the other algorithms is clear. But
what is remarkable is that, to achieve the same level of performance
as fully adaptive or PRI-staggered STAP, the STAR algorithm re-
quires a value of N that is several times smaller than for the other
algorithms.

3.2. Model Order Selection

The biggest difficulty associated with the use of AR methods for
this (or any other) application is the choice of the model order. Here
the problem is complicated by the fact that there are two parameters
to be chosen: m’ and L. A standard prediction error approach
would be to calculate the residual

e(m’, L) = |H"N|® (15)

for values of m’ and L on a grid, add a penalty term to account for
the number of free parameters in the model (as in Akaike’s criterion
[12] or the minimum description length (MDL) approach [13]), and
then minimize the resulting expression. Such an approach is taken
in [14] for 2-D AR models. However, the number of required pre-
diction error evaluations is quite large for this approach, and a sim-
pler solution is desirable. To find such a solution, we observe the
following:

1. We expect L to be fairly small, less than five in most appli-
cations.

2. Our experience with simulated data suggests that performance
does not vary dramatically with small changes in m’.

3. If (5) holds for some L, then the proper choice for m’ would
be the value that matches the rank of # with that of R.:

rank(R) = p = rank(¥#) = mN —m/(N-L+1) . (16)

4. Assumingm = 20, NV = 18, and a nominal value of p = 75
for the UESA circular array scenario, solving (16) for values
of L between 2-5 yields m’ between 17-22.

Based on the above, we propose fixing m' at a value in the range
suggested by the predicted rank of R. and typical values of L, and
then using a 1-D prediction-error based model-order selection scheme
to choose L. For the results presented in the next section, we used
the MDL-like criterion below:

. . m'mg—m'(m' +1)/2
L=a.rgnzm e(m',4)+1°gz( : mIVEP . ) ’
an




where the penalty term takes into account the fact that the columns
of H are constrained to be orthonormal by the STAR filter compu-
tation. Results are given below for both m’ = 15 and m’/ = 20 to
validate our assumptions. We note that an alternative method based
on “prediction error power” has recently been proposed for vector
AR models in [15].

4. NUMERICAL RESULTS

Since the prototype UESA circular array has yet to be field tested,
a data package has been created by MIT Lincoln Laboratories to
simulate the output of the array due to clutter in a standard oper-
ating scenario. Instead of 60 elements, the simulated data assumes
an array of 54 elements uniformly spaced around a circle of 5.93m
diameter. Only m = 20 of the elements are assumed to be used
for transmit and receive during one CPI. The antenna elements are
assumed to have a cosine-shaped response with a —30 dB back-
lobe for both the azimuth and elevation dimensions. The airborne

platform is moving with a velocity of 100 m/s above a 4/3 earth -

model at an altitude of 9000 m. The operating frequency of the
radar is taken to be 435 Mhyz, the radar bandwidth and sampling
frequency are 3.75 Mhz, the pulse-repetition frequency is 300 Hz,
and N = 18 pulses are assumed to be transmitted during one CPI.
Data are generated for 9325 range gates between 20-400 km with
a clutter-to-white-noise power ratio of 45 dB. A jammer signal can
be injected at range gate k by adding a term of the form

bivi ® a(;) ,

where b; and 6; are the amplitude and direction of arrival of the
Jammer, respectively, and vy is a unit variance Gaussian noise se-
quence that is white in both slow-time (the elements of v are un-
correlated) and fast-time (v and v; are uncorrelated when 3 # k).
When present, the jammer-to-clutter power ratio is assumed to be
10 dB. When secondary data are used to estimate the clutter covari-
ance or STAR filter parameters, equal amounts of data from range
gates on either side of the target range gate are used.

The true clutter covariance matrix used to generate the data is
known for 20 of the 9325 range bins, and thus the maximum achiev-
able SINR can be calculated at these ranges. Figure 1 shows a sam-
ple plot of SINR achieved using N, = 30 secondary data vectors
as training by the STAR, fully adaptive, and PRI-staggered partially
adaptive algorithms compared with the best possible SINR for a tar-
get at 50 km. The fully adaptive algorithm was implemented with
diagonal loading in order to compute the inverse of R, and the PRI-
staggered algorithm was implemented with K = 3 sub-CPIs. Both
the diagonal loading factor and K were chosen to yield the best
performance for these two algorithms. For the STAR method, m’
was set to 15 and (17) was used to choose a value of I = 4. The
STAR algorithm shows substantially better performance than the
other two algorithms, up to 10 dB better than the PRI-staggered
method, and 25 dB better than the fully adaptive implementation.
Of course, this is primarily due to the small secondary sample size
~ both of the other algorithms can achieve a higher level of per-
formance, but with nearly an order of magnitude more secondary
data. More examples illustrating this point will be shown below.
In subsequent plots, we will show “average” SINR loss for each
algorithm, which is defined to be the area between the algorithm’s
SINR curve and that achievable assuming R is perfectly known. A
graphical depiction is given in Figure 2.

Figures 3 and 4 show the average SINR loss for the STAR al-
gorithm as a function of L at two different ranges and for various
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values of m'. No jammer is present in this data. These figures
show that, as long as m' is not chosen to be too small (less than
15), the performance of the algorithm at the best value of L is not
a strong function of m'. The best SINR loss for each m’ is within
1-2 dB of the others. Note that larger model orders (L = 4 — 6) are
needed for the short range case compared with those at the longer
range (L = 2 — 3). At short ranges, the STAR filter attempts to
compensate for the non-stationary clutter by increasing the model
order.

Figures 5 and 6 show algorithm performance when a jammer is
present as a function of range, assuming N, = 30 and N, = 100,
respectively. The STAR algorithm is implemented with m' = 15
and m’ = 20, and both give roughly identical SINR loss. Per-
formance improves with range as the clutter becomes more and
more stationary, particularly for the fully and partially adaptive al-
gorithms. Still, the performance of the STAR algorithm is clearly
superior at nearly all ranges. The slight degradation in performance
for the STAR algorithm between 100-150 km is due to the model-
order selection algorithm in (17) switching too early from L = 4
to L = 3. Figure 7 shows the performance of the algorithms versus
N, at 300 km with a jammer present. The STAR method is able
to reach its best SINR with only 10 secondary samples, while the
PRI-staggered algorithm requires about N, = 30 for 2 dB worse
performance, and the fully adaptive method needs 100 samples for
a similar SINR loss. Figure 8 shows similar results for 50 km with-
out a jammer present.

5. CONCLUSIONS

We have presented a new technique for space-time adaptive pro-
cessing (STAP) based on vector autoregressive (AR) modeling. The
algorithm uses the AR model to generate a structured subspace that
is as orthogonal as possible to the clutter, and then uses this sub-
space to project out the clutter prior to space-time filtering. The
parametric structure imposed by the algorithm results in a signif-
icant computational savings over both fully adaptive and partially
STAP algorithms. It is able to provide excellent performance with
minimal secondary sample support, an advantage that makes it ide-
ally suited for applications involving non-stationary clutter (e.g., as
encountered in the circular array STAP problem). Using synthetic
circular array data provided by MIT Lincoln Laboratories, we have
shown numerous experimental results that demonstrate the superior
performance of the STAR approach.
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Multistage Adaptation for Large Digital Arrays

Daniel J. Rabideau
MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420-9108

Abstract

This work is concerned with efficient techniques for adaptive
interference cancellation, and their application to very large
digital arrays. Such arrays provide many Degrees of Freedom
(DOF:s) that can be used for filtering. However, the processing
hardware required to fully utilize these DOFs (ie., in a
simultaneous, data-adaptive fashion) is prohibitive. To address
this problem, we suggest two adaptive beamforming frameworks:
feed-forward multistage adaptation, and closed-loop multistage
adapration. We demonstrate the capabilities of these new signal
processing architectures. In typical applications, multistage
adaptive beamforming is shown to potentially result in one of the
following desirable results: (1) a large reduction in both
hardware and processing for a given performance level. (2) a
large improvement in interference rejection for a given number
of instantaneously adaptive DOF's.

1. Introduction

As radar enters the new millennium, requirements on
dynamic range and system sensitivity are surpassing the abilities
of conventional active array technologies. Fortunately for us,
extraordinary advances are being made in the areas of
communications, computers and networks. By exploiting these
technologies through increasing levels of array digitization, it
should be possible to meet forecasted requirements.

Of course, increasing levels of array digitization will
introduce fundamental shifts in the way we look at adaptive
arrays. For example, “Degrees of Freedom” (DOFs) will be
abundant, but how will we tap into them? The processing and
hardware required to fully utilize these DOFs (ie. in a
simultaneous, data adaptive fashion) is prohibitive.

To address this problem, we decompose the adaptative DOF's
into multiple stages. Two adaptive beamforming (ABF)
architectures are proposed: feed-forward multistage ABF, and
closed-loop multistage ABF. After briefly summarizing the
forces that are driving us to digital array technology, we will
describe these architectures and evaluate their performance.

2. Digital vs. Analog Array Technology

In the author’s opinion, there are several compelling reasons
for why digital array technology (Figure 1b) will eventually
supplant the competing active analog array technology (Figure
1a) that is so prevalent today.

This work was sponsored by U.S. Navy under Air Force Contract
F19628-95-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily
endorsed by the United States Air Force.
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Figure 1. Analog and digital array techologies

First, consider the distribution of signals. Analog arrays
distribute signals via lossy methods. Furthermore, good
performance necessitates that the signal paths be carefully
matched. Digital arrays, on the other hand, distribute signals
using more robust digital methods. On transmit, digital control
words command each module to create its own piece of the
transmitted waveform (a process known as direct digital
synthesis, DDS). On receive, signals are sampled within each
module, followed by digital down conversion (DDC). In many
cases we may choose digital components (i.e., DDS, DDC, A/D,
etc.) that are also used in commercial wireless communications
systems, resulting in low costs due to both competition and high
volume manufacturing.

Next, consider dynamic range. To cancel interference down
to the noise level, the receiver’s dynamic range must be at least
as great as the dynamic range of the interference. This figure can
be quite high, for example, in littoral clutter environments. In an
active analog array, the receiver device that typically limits the
achievable dynamic range is the analog to digital converter
(A/D). The dynamic range of current A/D converter technology,
however, is typically 15 to 20 dB below the requirement for
littoral clutter. Moreover, A/D converter technology is
improving at a very slow rate. Fortunately, by moving the A/D
into the module, digital arrays can increase their dynamic range
through array integration (i.e., beamforming).

Finally, consider the beamformer itself. The beamformer
creates a small number of beams that are subsequently combined
by the adaptive processor. Flexible beam selection is a critical
factor in determining array performance in an interference rich
environment. Analog beamforming methods, however, are not
easily adjusted to accommodate changing interference




environments and (in the case of multifunction radar) operating
modes. Digital beamforming offers much more flexibility.

3. Beamforming for Large Arrays

Consider an array consisting of N digitized channels. Let x X

be the N'X1 vector of samples present at time instant k. This
snapshot contains energy from J nonstationary interference
sources (hereafter referred to as jammers) and noise. Our task is
to build a filter capable of suppressing this interference while
receiving signals from direction © .

There are two conventional approaches to solving this
problem. The first approach, “fully adaptive beamforming,”
simultaneously adapts on all N DOFs. This approach is
unattractive, however, because of the large quantity of resources
required (e.g., processing complexity, training data, etc.).
Instead, we seek a more efficient beamforming technique.

The second conventional approach, “beamspace ABF,”
involves mapping the N channels into M beams prior to adaptive
interference rejection (see Figure 2). When M is much less than
N, this yields a substantial reduction in required resources.

N channels
(e.g., 1000)
X,

Adaptive
Beam
Former
W,

Targets

Figure 2. Conventional Beamspace Adaptation

Conceptually, we can think of this mapping as being
performed by an NxM linear transformation matrix, T (e.g.,
the columns of T may define a set of beams, subarrays, and/or
sidelobe cancellers). The M x1 beamspace data vector at the
output of this transformation is given by y, =T* X, .

The beamspace snapshot, y,, contains J jammers that
interfere with target reception. An adaptive filter, z, =w¥y x5

used to suppress this interference. In a radar context, the optimal
filter for rejecting the interference in y, is the Wiener filter:

w, =R;'(1%d) 6
where R, =E{y Y } and d is a vector containing the array’s
response to a target signal of interest.

It is known that beamspace ABF gives nearly optimal
performance as long as M >J and T is chosen appropriately.
However, if M <J we cannot suppress the interference by
merely combining elements of y, . The apparent implications of
this statement is ominous:

I. At most, only M —1 jammers can be cancelled. In
practice, however, the actual number of jammers will vary with
time and are not under our control (to state the obvious). As a
result, the real-time processing hardware must be in-place to
support the maximum number of jammers anticipated.

2. Proper selection of T is essential and can be costly.

14

This paper focuses on creating ABF architectures that address
these problems. Before we begin, let us note some relevant prior
work relating to item 2. Generally speaking it is known that the
best beamspace, T, contains a set of beams spanning the
interference subspace [1]. This implies prior knowledge about
the jamming which, in turn, can be gained by open-loop spectral
estimation applied to the raw channel data [1,2]. However, these
techniques can be costly.

As for item 1, the question of how to reduce the number of
instantaneously adaptive DOFs, M , beyond J +1 has received
considerably less attention. As we shall see, the solution to this
problem lies in separating the notions of “adaptive DOFs” and
“instantaneously adaptive DOFs”,

4. Closed-Loop Multistage Adaptive Processing

This paper describes two new approaches to adaptive
beamforming with large digital arrays. The first of these, Closed-
Loop Multistage (CLM) processing, is described in this section.

Compared with conventional beamspace adaptation, CLM-
ABF amounts to a relatively simple hardware modification
combined with a creative combination of spectral estimation,
subspace tracking, and beamforming. CLM-ABEF is capable of
canceling up to N -1 jammers using only M instantaneously
adaptive DOFs. Each jammer can be moving, stationary, or some
combination thereof. This is accomplished at a fraction of the
hardware cost of fully adaptive beamforming.

Of course, there is no free lunch. In our case, the “catch” is
that we must distinguish between the traditional notion of
adaptive DOFs, and something we call “instantaneously adaptive
DOFs”. Let us explain. Our interference canceller is composed
of three core elements, interconnected as shown in Figure 3:

1. A programmable digital transformation device that reduces
the number of DOFs by producing a mainbeam (in which desired
signals are sought) and a small number of other channels.

2. An adaptive processor that operates only on the outputs of
the digital transformation device. It uses these outputs for two
purposes:  (a) rejection of interference and (b) control
processing.

3. A control link to feed filter weights from the adaptive
processor back to the digital transformation device.

N channels Adaptive Processor

(e.g., 1000s)

| Adaptive
[Aigorithms

Figure 3. Closed-Loop Multistage ABF

As in conventional beamspace ABF, the digital
transformation device simply transforms the N-dimensional
channel-space data into M-dimensional beamspace data via
Y. = Tkﬂxk .

The subsequent adaptive processor operates only on the
outputs of this device. It performs two tasks: interference




rejection and control processing. The two tasks are not
independent! One can view the combined processor as a single

adaptive filter, z, = WY x, where the adaptive weights, W, , are
simply factored into two components
w,=Tw,. @)
The adaptive processor must choose both components. To
accomplish this, it uses the following control rules:
1. Compute weights, w,, that have the desired directivity

while simultaneously rejecting the interference presentin y, .
2. Create a transformation T,,, such that (a) many of the

instantaneously adaptive DOFs that were allocated to rejecting
interference during the formation of w, will be released for

other uses when forming w,,, (where £ is some small integer).

(b) nulls on previously acquired jammers are periodically
updated.

The first item (illustrated by the upper path in Figure 4) is
accomplished by using traditional beamspace ABF techniques,
e.g., see [3, sect. IV-VI]. Items 2a and 2b are termed
“acquisition” and “updating,” respectively (see lower path of
Figure 4). An implementation of these functions is described in
the following sections.

[Beamspace Recelve

Adsptive Beams
Canceller I

Out

N Digital
M Transform
Te

Arayin

Ep—r_|

A=Putbeamson new jammer  C=Adjustbesmson jammer  E=Continue
8= Null jammer D= Put beams on oid jammer F = Put beams on oid jammer

Figure 4. Flow diagram for typical closed-loop
multistage adaptive beamformer

4.1 Acquisition

The acquisition of new jammers is performed in three phases:
detection, initial estimation, and refinement. Each of these
operations is performed using the beamspace data. The beams
consist of n’ main beams and m’ other beams. Together,
M =n"+m’. The n’ main beams integrate target energy with
the goal of enhancing detection and estimation. Additionally,
each main beam contains nulls in the directions of previously
acquired jammers.

The m’ other beams are composed of r refinement beams
and a auxiliary beams. The auxiliary beams are designed to
cover the broad region corresponding to potential interference.
The refinement beams are chosen to have directional responses
as discussed below (for simplicity, initially assume r=0). In
both cases, these beams will have nulls steered toward previously
acquired jammer subspaces.
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Detection: The purpose of jammer detection is to identify
the presence of (1) new jammers or (2) old jammers that, for one
reason or another, are inadequately nulled’. Jammer detection
has been studied in the literature, and a suitable method can be
adapted to our purpose. For example, at time k we first construct
a matrix of recent beamspace snapshots, Y, . Then, its singular
value decomposition is computed, Y, =U,S,V/ . Finally, the
singular values are compared to a threshold, telling us if jammers
are present and how many. A method for determining the
threshold is described in [4].

Initial Estimation: After a jammer detection occurs, we
form an initial estimate of its subspace. Direct estimation of the
jammer subspace from the beamspace data is undesirable, as
discussed in [5]. Instead, we need to use external information
(i.e., information not contained within the data snapshots
produced by transformation T, ).

A suitable initial estimate can be generated by first
performing parameter estimation (using the beamspace data),
then substituting these parameters into a model for the array’s
response (as a function of those parameters). The literature
describes many techniques that can be used for the parameter
estimation stage’. For example, beamspace MUSIC computes
the spectrum:

1

s” (€U, Us(e)
where s(6) is an estimate of the beamspace array response to a
signal from 6, and U, is a matrix containing the left singular

s@)=

vectors of Y, corresponding to the M —J’ smallest singular
values. The J’ peaks of S(6) are then used to initially estimate
the 6 ’s corresponding to the J’ jammers in acquisition.

Once the peaks have been identified, the associated
parameters are substituted into a model for the array’s response
(often called the manifold), resulting in a suitable initial jammer
subspace estimate. Due to the extremely small number of DOFs
that are used during the parameter estimation stage, the initial
subspace estimate is likely to contain errors. It is for this reason
that initial estimation is followed by refinement.

Refinement: In the refinement phase, we use previously
computed estimates of the jammer subspace to select a new
digital transformation, T,,,. Our objective is to choose T,,, so

that subsequent jammer estimates will have reduced errors. We
accomplish this by pointing refinement beams toward the
estimated jammer subspaces.

After adjusting T,,, and forming y,,,, we then re-estimate

the jammer subspace. This new estimate will have smaller errors
(e.g., see [6]). The adjusted beamspace also improves
cancellation of jamming by the beamspace adaptive canceller
(e.g., see [1]).

The refinement procedure is repeated until the jammer
subspace converges, at which time a final estimate of the jammer
subspace is made. If the array manifold is known to a high

* For example, a jammer may have moved since its subspace was last
acquired and used to steer nulls. Alternatively, there may be residual
jamming due to errors in prior jammer subspace estimates.

T Relevant techniques which can be easily adapted to our purpose include
MUSIC, ESPIRIT and Maximum Likelihood estimation.




degree of precision, the final jammer subspace estimate can be
made in the same manner as the initial estimate above. When the
array manifold is not known to a high degree of precision, the
final estimate can be made from the dominant singular vectors of
the beamspace data matrix (after transformation back into N
dimensional space). See [5] for some details on this procedure.

4.2 Formation of Nulling Transformations

Given a final estimate (at time k) of the jammer subspace
E,= [eI --- e, ] corresponding to the jammers present at the

input of the adaptive processor, the next digital transformation
should be modified to null it. This can be accomplished via:

T.. =BT, =PP, ~PT. 3

The matrix P, removes the jamming present in y,. For

example, P, may be a  projection  matrix,

P, =I-E, (EfE ,.)IEj’.. (Alternately, the square-root

conjugate transpose of jammer covariance estimates may be used,
see [5]).

4.3 Updating

If the jammer subspace changes after acquisition (as, for
example, due to jammer motion), system performance may
degrade. Therefore, it is desirable to update the jammer subspace
from time to time. This is accomplished by scheduling a future
digital transformation, T,,,, to pass the jammer(s) (instead of

nulling them) and to include beams pointed at the jammer(s).
After collecting data with such a transformation, the jammer
subspace re-enters the refinement phase as described in Section
4.1.

The revisit time, 7 , required for a specific jammer subspace

is determined by the shape of the jammer null and the worst-case
predicted motion. To lengthen the revisit time, we can
intentionally widen the interference notches. This can be done
through conventional techniques (e.g., the design of stopband
beamformers) or via newer techniques such as the introduction of
array troughs [7].

Note that our framework is robust to incorrect choices in 7 .

If a jammer’s subspace changes before its scheduled revisit time,
the residual jamming will be cancelled in the subsequent
beamspace adaptive canceller (assuming enough DOFs exist). At
the same time, this should automatically initiate a new
acquisition cycle for the jammer. By comparing the newly
estimated jammer subspace to the set of previously acquired
subspaces, near matches can be identified as possible jammer
motion. When this happens, the relevant (previously acquired)
Jjammer subspace also directly enters the refinement phase.

5. Feed-Forward Multistage Processing

Next we consider a second approach to adaptive
beamforming. Feed-forward multistage processing borrows and
modifies an idea first exploited by Eilts and Compton [8]. They
were faced with analog beamforming technology of limited
dynamic range. They showed that a cascade of adaptive
processors could be used to enhance dynamic range by adjusting
the first stage to null only large signals, and the second stage to
null the smaller signals. Later, Liu [9] showed that LCMV
adaptive beamformers could, in general, be expressed in a
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factored form. At each stage, the adaptive processor is permitted
to use only a subset of DOFs. Data dimensionality was
maintained throughout the stages. Later, Niezgoda [10]
experimented with the idea of updating the filtering stages at
different rates.

Our feed-forward multistage processor departs from the
others principally in its objective. We wish to minimize
implementation cost and training requirements. In doing so, we
decompose our beamformer into multiples stages as shown in

Figure 5 (for the special case of 2 stages).

Nchanneis
(e.g., 1000s]

Subspacel] M channels

Tracker fj (0.9-20) Adaptive Beams
& Beam on
Digital Former Targets

Beam

Former

Figure S. Feed-forward multistage ABF for very
large digital arrays

The first stage performs both subspace tracking and digital
beamforming. The subspace tracker estimates a basis for the
rank-deficient jammer subspace. Traditionally, an SVD of the
array data has been used to estimate this jammer subspace.
However, the complexity of this factorization is too high to
perform often (i.e., to use in a tracking scenario). Instead, an
SVD-like factorization can be used. In fact, it was shown that
both the jammer spectral energy (e.g., singular values) and an
orthonormal basis for the jammer subspace can be tracked with
only O(NJ ) operations per update [11]. Recently, other similar
methods have also attained this desirable objective [12].

Once the subspace has been estimated (via a fast algorithm
such as [11]), a set of jammer nulled beams can be created using
the method of [11] (or perhaps more simply by projecting a set of
prototype beams into the space orthogonal to the estimated
jamming). These beams are applied to the element data”. The
beamformed outputs are then processed using conventional
beamspace ABF.

In this feed-forward architecture, there are several keys to
low-cost operation. First, fast subspace tracking combined with
digital beamforming requires far less computation than full SMI
when J < N. Second, multistage adaptation adds robustness
against inadequately nuiled jamming (at the output of the first
stage). This latter fact may be exploited to lower the complexity.
For example, we may choose to perform only a small number of
subspace updates every CPI. This will degrade the performance
of our stage-one beamformer; overall performance, however,
might still be maintained by the second stage. Moreover, the
total weight computation complexity (for both stages) per CPI is
only:

oM )+ o(i&)+ P
where P is the complexity of creating the stage 1 beams using the
most-current estimate of the jammer subspace, ¢ is the rate at

which these beams are updated, and & is the number of rank-1

* Note: Our combined subspace tracking and digital beamforming thus provides a
computationally efficient for updating the adaptive weights. Astute readers will
observe that there are some other traditional methods for achieving this goal (e.g.,
based upon updating the QR decomposition of the data matrix, or by exploiting the
matrix inversion lemma). For J < N, however, these methods have higher complexity
(per update) than the method described here.




subspace updates performed every CPI. Note that £ could be
small, e.g., one or even less than one. Likewise, ¢ may be less
than £.

6. Evaluation

Here, we illustrate the potential offered by multistage ABF.
We employ a 50 element uniform linear array (N =50). The
array is digitally transformed into six beams, including a single
main beam (steered to 0°) and five other beams (n'=1, m'=5).
Initially, the m’ other beams had all-pass spatial responses.

We begin with an illustration of the jammer nulling potential
of multistage ABF. Sixteen jammers are synthesized. They
appear at intervals of 10 (i.e., at k=1, 11, 21, ...). Their angles
are -80°, -70°, -10°, 10°...,80°, in order of appearance.
Each has a JNR of 30 dB per element. Figure 6 plots SINR loss
over time for each of the multistage ABFs.

5,,,
O A{fFie CLM ABF
5 ’Tw ° .« Feedforward ABF
o ;
©-10 d «-— CLM stage 1
45 i
-20 T . 44— Beamspace ABF
N
-25'
50 100 150
k

Figure 6. SINR Loss Comparison

First, consider closed-loop multistage ABF. As each new
jammer appears, detection and initial estimation occur
immediately, with acquisition completing within 2 CPls.
Observe that the output of the first stage (alone) does quite well
after the jammers are acquired. During acquisition, however, the
sidelobes in the first stage are too high to reject the strong
jamming entirely. During this phase, it is the second stage that
nulls the new jammers. The combined performance never
deviates far from 0 dB.

Next, consider the feed-forward ABF. Here, a single rank-1
subspace update is performed each CPI. This is sufficient to
track the very low-rank, slowly nonstationary interference.
Performance is generally good throughout the simulation.

To put these muiltistage ABFs into context, Figure 6 also
shows conventional beamspace ABF (i.e., a fixed digital
beamformer producing a mainbeam and five omnidirectional
auxiliaries, followed by SMI). In this case, the number of
jammers exceeds M —1 at k£ =61. Henceforth, the conventional
processor does not have enough adaptive degrees of freedom and
performance clearly suffers.

To summarize Figure 6, both multistage ABFs successfully
removed all 16 jammers with only six instantaneously adaptive
DOFs. Conventional beamspace ABF (using the same number of
adaptive DOFs) showed considerable degradation. To improve
beamspace ABF to the level exhibited by our multistage
beamformers would require many more adaptive DOFs and the
associated hardware.
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Next consider the effect of training set size and update rate.
Figure 7 shows the effect of training set size on CLM ABF. Note
that performance degrades gracefully, in a manner analogous to
the Reed, Mallet and Brennan losses in SMI. Figure 8 shows the
effects of both training set size and subspace update rate on the
feed-forward ABF. The upper two curves use a single rank-one
update per CPL. Performance is good, but as the update rate is
decreased, performance degrades.
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Figure 7. CLM SINR vs. size of stage 2 training set.
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Figure 8. Feed-forward SINR for 1 update per CPI
and 10M and 5M training. Also shown, 1 update
every five CPI’s and 5M training.

We use a second simulation to illustrate the initialization of
the CLM processor in dense interference environment. Note that
since CLM has access to only M instantaneously adaptive DOFs,
it can not track highly nonstationary interference whose rank is
too high. However, if the nonstationarity occurs in “bursts”, a
sectorized re-initialization mode can be used to recover the
jammer subspace. Consider, for example, a scenario in which 8
jammers suddenly “turn on”, but only 5 DOFs are available to
track and/or null them. To estimate all 8 jammers, the signal
space can be partitioned into sectors. Each sector, in sequence, is
covered with beams. Detection and estimation is performed
within each sector, initially acquiring only the strongest jammers,
but later acquiring the weak ones. Figure 9 shows the
performance of this mode.

Finally, we use a third simulation to illustrate the impact of
uncompensated jammer motion on the CLM processor. If a




previously acquired jammer moves before its scheduled revisit
time, and this motion is not compensated by re-steering the null,
then jammer energy may leak through the stage-one digital
beamformer. As mentioned earlier, robustness to this scenario
can be gained by widening the jammer null. This is illustrated in
Figure 10.

5 SectorMode  Normal Mode
o N

"~ A~ 4—-CLM ABF
5 ~—CLM stage 1

Figure 9. SINR during sector initialization mode.
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Figure 11. CLM SINR. The motion of jammer 7 is
not intentionally compensated here. Instead, CLM is
allowed to automatically track the jammer.

If significant jammer energy still manages to leak through the
stage-one beamformer, CLM will detect and estimate the jammer
again. The estimate will be associated with the prior jammer
null. and a revisit will be automatically initiated. The outcome
will be a null that is steered to track the jamming. This is
illustrated in Figure 11. Here, there are six jammers present
initially. A seventh jammer then appears and moves in an
uncompensated fashion. As can be seen from Figure 11, anull is
steered in stage one, but this null is soon “off.” However, CLM
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| Stages 1 & 2

detects the error, correctly associates the error with the proper
old null, and re-steers the null to restore cancellation. All the
while, the second stage processor removes the jammer leakage.
thus maintaining good end-to-end performance.

7. Summary

This work has outlined new multistage adaptive beamforming
approaches. In the CLM case, our approach is to break the
adaptive processor into two stages connected by a data link and a
feedback control link. As each new jammer appears, cancellation
is initially achieved through conventional beamspace adaptive
processing. However, by carefully selecting the beamspace
transformations, this job is soon passed on to the first stage.
Thus, a relatively low DOF processor is used to control a much
larger number of DOFs, reducing the required processing
complexity. The architecture is computationally efficient, but
requires that an accurate external array calibration be performed.

In the feed-forward case, two or more conventional ABFs are
cascaded. Each stage reduces dimensionality, and thus the size,
weight, power and cost of the processing hardware for the
subsequent stages. To ease the burden on the initial (i.e., high
dimensionality) stage, fast subspace tracking is used and
updating is performed in a parsimonious manner.
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ABSTRACT

This paper deals with adaptive radar detection of range-
spread targets (with unknown amplitudes) embedded in
Gaussian noise with unknown covariance matrix. For es-
timation purposes, we assume that cells (referred to in the
following as secondary data), free of signal components, are
available. All of data vectors possess one and the same
covariance matrix.

Detectors based upon the GLRT are designed; in par-
ticular, we propose two-step decision rules based on the
following rational: first assume that the structure (or the
structure and the power level) of the covariance matrix is
known and derive the GLRT over the cells under test, then
plug the sample covariance matrix, based upon secondary
data, into the previously derived detectors. We show that
the newly-introduced decision schemes ensure the CFAR
property with respect to the covariance matrix of the noise.
The performance assessment highlights that these two-step
detectors and the GLRT over the totality of data, previ-
ously derived by Kelly and Forsythe, have comparable per-
formance. Hence, the two-step approach is to be preferred
since it leads to simplified structures. Finally, we compare
the proposed schemes with the one which assumes knowl-
edge of the covariance matrix of the disturbance. The com-
parison confirms the suitability of these detectors to operate
in real radar scenarios.

1. INTRODUCTION

A high resolution radar (HRR) can resolve a target into a
number of scattering centers depending on the range ex-
tent of the target and the range resolution capabilities of
the radar. In particular, the Multiple Dominant Scatter-
ing (MDS) centers, i.e. the individual parts of the target,
may appear in a number of well separated range cells [1].
During the past decades, many results have been obtained
in radar detection and imaging with HHR’s. In particu-
lar, radar detection of distributed targets in white Gaussian
noise of known spectral density level has been addressed in
[2]. Therein, two detection structures have been proposed
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and the results indicate that properly designed HRR'’s al-
low to significantly enhance the detection performance. The
possible improvement depends upon two factors:

a) increasing the range resolution of the radar reduces
the amount of energy per cell backscattered by dis-
tributed clutter;

b) individual parts of the useful target can be resolved
and, since they appear in a number of well-separated
cells, they introduce less fluctuations than an unre-
solved point-target.

The effects of the clutter reduction in a single range
cell and of a MDS target model on the target detectability
has been also studied by Nitzberg in [3]; he analyzed how
the probability of detection of range-distributed targets de-
pends upon the signal bandwidth in case of single pulse
processing. In particular, he showed that the best perfor-
mance is achieved when the radar bandwidth just resolves
the individual scatterers; in fact, resolving the dominant
scatterers introduce less fluctuation, but when the signal
bandwidth is further increased the performance degrades
as a consequence of the lack of knowledge about the posi-
tion of the dominant scatterers within the extension of the
target (the so-called collapsing loss).

Constant False Alarm Rate (CFAR) detection of dis-
tributed targets in Gaussian noise with unknown covari-
ance matrix, based upon the Generalized Likelihood Ratio
Test (GLRT), has been addressed in (4, 5, 6]. Therein, re-
turns from different range cells are modeled as independent,
identically distributed, Gaussian vectors with unknown co-
variance matrix; moreover, a set of secondary data, free
of signal components, is available to estimate the spectral
properties of the disturbance, see also {7].

In this paper, we still deal with the problem of detect-
ing an extended target (with unknown amplitudes) across
a bunch of cells (also referred to in the following as primary
data) embedded in Gaussian noise with unknown covariance
matrix. Again we resort to a set of secondary data which do
not contain any useful target echo and assume an homoge-
neous environment, namely that all of cells possess one and
the same covariance matrix. The last assumption refers to
situations where the maximum spacing between any two




range cells is small compared with the scale over which
power levels become different. Analysis of radar recordings
has shown that such situation can be of practical interest
for HRRs [8]. We address further the suitability of detec-
tors designed according to the GLRT. The result proposed
by Kelly and Forsythe, included for reader’s ease, is gener-
alized in that we resort to modified GLRT-based statistics,
see also [9], a point fully clarified in the problem formu-
lation. CFAR properties and detection capabilities of the
newly-introduced detectors are successively investigated.
The paper is organized as follows: in the next section,
section 2, we state the problem to be addressed and intro-
duce the target and the noise models; in section 3 we de-
rive the GLRT-based detectors; section 4 is devoted to the
performance assessment of those receivers, also in compari-
son with previously proposed detectors. Section 5 contains
some concluding remarks and hints for future research.

2. PROBLEM FORMULATION

We assume that data are collected from N semsors and
deal with the problem of detecting the presence of a tar-
get across H range cells based upon the corresponding
returns, 2 ¢ = 1,...,H, say. We suppose that the
possible target is completely contained within those data.
As in [7], it is assumed that a secondary data set 2,
t=H+1,... H(K + 1), is available, that each of such
snapshots does not contain any useful target echo, and that
all of data possess one and the same covariance matrix.

The detection problem to be solved can be formulated
in terms of the following binary hypotheses test:

Ho: ze=mn,, t=1,...,H(K+1)
t=1,....H
t=H+1,...,HK+1)

Hy - { Zt =0t p+ny,
Zt = My,

where p denotes the steering vector and the ags, t =
1,..., H, are (unknown) deterministic parameters account-
ing for both the target and the channel effects.

As to the noise vectors, we assume that the ms, t =
1,...,H(K +1), are independent, zero-mean Gaussian vec-
tors with covariance matrix given by

Elnnf] =M, ¢=1,...,H(K +1), (1)

where E[-] denotes statistical expectation and ! conjugate
transpose. Moreover, we suppose that the n;s possess the
circular property usually associated with I and Q pairs of a
Wide-Sense Stationary process.

According to the Neyman-Pearson criterion, the opti-
mum solution to the above hypotheses testing problem, is
the Likelihood Ratio Test; but, for the case at hand, it can-
not be implemented since total ignorance of the parameters

a = (a1,...,ay) and M is assumed. We resort, instead,
to GLRT-based decision strategies: strictly speaking, the
GLRT is tantamount to replace the unknown parameters
by their maximum likelihood estimates under each hypoth-
esis, based upon the entirety of data [10]. Note that, it has
no known optimality properties and, for point-like targets
(i.e. H = 1), a simplified test statistic can achieve higher
detection probabilities [9]. In fact, for that case, the GLRT
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detector is not a Uniformly Most Powerful (UMP) Invari-
ant test and, actually, a UMP-Invariant test does not exist
as shown in [11]. Thus, it is also reasonable to investigate
different strategies and, in particular, the one proposed in
[9] which relies upon a two-step GLRT-based procedure:
first assume that the covariance matrix M is known and
derive the GLRT maximizing the Likelihood Ratio over .
Then, after the GLRT is derived, the sample covariance
matrix, based upon secondary data, is inserted, in place of
the true covariance matrix, into the test. A possible alter-
native has been conceived in [12]: in the first step assume
that only the structure, ¥ say, of the covariance matrix is
known and, hence, derive the GLRT-based detector maxi-
mizing over both « and the power level, 262 say. Finally,
a completely adaptive detector is obtained by plugging the
sample covariance matrix, based upon secondary data, in
place of X into the test statistic derived for known X. In
the following we investigate either alternatives to detect
range-spread targets.

3. DERIVATION OF TWO-STEP GLRT-BASED
DETECTORS

We first derive the GLRT based upon primary data as-
suming that the covariance matrix M or its structure
is known. Fully adaptive detectors are then obtained by
substituting the unknown matrix by the sample covariance
matrix based upon secondary data only.

Step 1. The pdf of the first H vectors is given by

fzi,zu(21,..., zu|M, Hp) =
. » (2)
=N det(M)]H EXP ["tT(M T°)]
under Hyp and
fzi, zu(21,..., z5|M, o, Hy) =
' (3)

1 -1
=N det(MF €XP [_t"'(M Tl)]

under Hj, respectively, wherein
H
To = Z =1 2t ZI

Ti=3 (20— e p)( 2 — s p)t

According to the GLRT, we replace the unknown pa-
rameters by their maximum likelihood estimates. To this
end, denote M by 2025 where 202 is the (1,1)-th compo-
nent of the Toeplitz matrix M. The derivation is begun by
writing the GLRT under the assumption that the covariance
matrix or its structure only is known, namely considering
the following decision rules

maxa f zy,., 24 (21,-.., 2|, M, H)
lev'"l zH(zlv”" zHlMaHO)

H;
26 (4
H,




for known M and

max oy 5,2 f 2. Zp(Z1,000 Zg| @,202%,H1)
s 21202 Hp)

H, (5)

for known X, respectively. Substituting the multivariate
Gaussian density functions (2) and (3) in the previous for-
mulas, and performing required maximizations, yields, after
some algebra

Z | pTM |2 %l G (6)
1
p'M- o

for known M and

- H
Zf:] I pTE ' Ztlz !

>
G (M
ptE-1 pzzil 2Im-1 2, EO

for known X, respectively, with |- | denoting the modulus of
a complex number. Note that when the covariance matrix
is known the denominator of the Left-Hand-Side (LHS) of
eqn. (6) is independent of the data and the test statistic
reduces to the sum of the squared modula at the outputs
of a bank of filters matched to M~! p whose inputs are the
primary data.

Step 2. Assume HK > N. We can make detectors (6)
and (7) fully adaptive, by plugging the maximum likelihood
estimate of M, based upon the secondary data z:, t =
H+1,...  HK+1),ie

H(K+1)
="K z 2}
t=H+1

in place of M into (6) and of ¥ into (7). Equivalently, we
can substitute M and ¥ by S, namely

H(K+1)

S= Z ZgZI.

t=H<41

The resulting decision rules, referred to in the following as
Generalized Adaptive Matched Filter (GAMF) and Gener-
alized Adaptive Subspace Detector (GASD), are thus given

by

_ 2
2 | pt 57t nf B
> s, < © (®)
t=1 p p Ho
and
- H
Tl s7al S, ©)
Pt ST pYL 2l 57 =
respectively. Note that for H = 1 the GAMF and the

GASD reduce to the well-known AMF and ASD, respec-
tively.
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For future convenience the one-step GLRT, derived by
Kelly and Forsythe [4], is reproduced here :

H t H
det (2t=1 2t Z4 + S) >1 G (10)
~ - <
det [Z:’:l (ze—&p)(ze—ap) + S] H,

where

t o-1
g = _____”ts_l’“, t=1,... H.
ptSTp

As a matter of fact, this detector is a special case of that
proposed in [4] and, successively, reformulated in [5, 6].
In particular, in [5] Burgess and Van Veen recast the test
statistic into a form advantageous for subspace processing
applications while in [6] Bose and Steinhardt resorted to
the principle of invariance. Furthermore, if we also assume
that the radar is not able to resolve individual parts of a
possible target, then H = 1 and detector (10) reduces to
that proposed in [7].

Remarkably, either the one-step detector, the GAMF,
and the GASD have the CFAR property with respect to M,
see [4] for the one-step GLRT. It is also apparent that the
two-step detectors are simpler to implement than the plain
GLRT. It remains to compare the two approaches in terms
of obtainable performance. This is the object of the next
section.

4. PERFORMANCE ASSESSMENT

To begin with we show that the probabilities of detection
of the GAMF and the GASD are independent of the actual
MDS model being in force. In fact, the following proposition
holds true.

Proposition 1. The probability of detection (Py) of
the GAMF and that of the GASD depend upon

Q1,...,QH, P3M
only through the signal-to-noise ratio (SNR) defined as

H
snp =2zl oy
N

Proof: first of all, following (7], we recast tests (8) and
(9) in a more convenient form. To this end, denote by
U the unitary transformation aimed to rotate the vector
M-% p onto the direction of e; = (1,0,...,0), by x¢, t =

., H(K + 1), the transformed whitened data vectors,

and by C HK times the sample covariance matrix of the
transformed secondary data, i.e.

U: UM ip=y/pM-pe,

=UM"% 2, t=1,...,H(K +1),
~ H(K+1
C= t=(H+l) z, ) .

Then, tests (8) and (9) can be re-written as
2

H lelC! a, Iil

E = G (11)
- <

=1 eJ{C 181 H,




and 9
ZtH_I 'e§C‘l mt| H,
= >
— _ G, (12)
e Cle; Zt:l

ziC-1 z, }?0
respectively. Now decompose the vectors =z, ¢t =
., H(K + 1), into two components, an A component
consisting of the first element only, x: 4, say, and a B
component consisting of the rest of the vector, z g, say.
Based upon the above decomposition, tests (11) and (12)
can be recast as

S| wa - SIS wenas|  H g
fz(ﬁii) ~ZH(§:11) Ti, AQk,i ’ I-?o E t
and
AL ORI
A NS SisEveni S

G H t -1
720-3) Zt=1 Ty B Spp Ti.B,
respectively, with

~1
Gtk = ‘”L,B Spp T8,

— mt -1
Qri= x; 5 Spp Tk,B,

H(K+1) t

SBB =) 4yopi1 THB T, p-

To proceed further, note that, given the ¢ ps, t =
-, H(K +1), the numerator and the denominator of the
tests are each other independent, moreover

¢ the denominator is a central x? random variate with
2(HK + 1 — N) degrees of freedom;

¢ the numerator is the Buclidean norm squared of the
H-dimensional vector

H(K+1)
W=(2:1‘A—-— k=H+1 Tk, AQL ks -,
H(K+1)
THA ™ 2ipmnsr ThAGHk

and, under H;, w is a Gaussian vector with mean
vector and covariance matrix given by

vV pM-1p «

Iy +X% SpyXs, (15)
respectively, where Xp = ( ] p,..

and

- m;-l,B )

Then, denote by U; the unitary transformation aimed to
rotate the vector o onto the direction of e; and introduce
the transformed vector v = Uyw. It follows that, under H;
and given the @y ps,t=1,...,H(K + 1), v is a Gaussian
vector with mean vector and covariance matrix given by

H
D leul? ptM-1 p e
t=1
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and

Iy +UiXE S35 XUl (16)
respectively. Moreover, the sum at right-hand-side of
eqn. (14) can be re-written as

Zt -1 tB B}B 3:t3~—t‘r‘[){T S XB]=
17)
r[UX} S35 XUl .

Hence, given the xips, t = 1,...,H(K + 1), the condi-
tional value of Py of detectors (13) and (14) can be written

G
P, =1-F —,SNR
dl Ty g Tyk+1).8 |U1xgv Sss (\/5 >
and
P, =1

_ G
Fiulx;, Ses (\/‘5(1—0)
xtr (U1 X}, S35 XsUl],SNR) ,
respectively, where

F]UIXL. Ses (.SNR)
denotes the conditional Cumulative Distribution Function
(CDF) of the LHS of either tests. In particular, previous
notation highlights that the dependence of the conditional
CDF upon the @ s, t=1,...,H(K + 1), is confined to
U1XTB and S BB-
In order to determine Py we can first average out the
z¢Bs, t = 1,...,H, and then the x¢ps, t = H +
-, H(K + 1). Following this guidance, we get

Pd=1"‘E$H+1,s ..... zH(K+1),BE$1.wa Ty s

G
[F|U1x§g- Ssp (ﬁ, SNR):I

for detector (13) and

Pe=1-E THi1,B:-

, mH(x-H),BE Ly, Bss TH.B [

G
Flulx“B, Ses (ﬁ(l—c) [le SzsXsU ] ,SNR)]

for detector (14), respectively. To conclude the proof, it is
then sufficient to observe that U1X is statistically equiv-
alent to X and independent of Sgpg.

A detailed analysis of detector (10) and, in particular,
closed form expressions for the probability of false alarm
(Pfa) and the P, are reported in [4] and [5]. Therein, it is
showed that also the P; of (10) is independent of the actual
MDS model being in force.

The remaining part of this section is devoted to the
performance evaluation of the GAMF, the GASD, and the
GLRT (10). To this end, we resort to standard Monte Carlo
techniques and, in order to limit the computational burden,
assume Ps, = 10™*. Moreover, we assume that if the radar
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Figure 1: P, versus SNR of the detector (10) (solid
curves), the GAMF (dashed curves), and the GASD (dot-
ted curves) for N = 8, K = 16, Pj, = 107, and H as a
parameter.

resolution is increased by a factor H the noise power per
cell, 207 say, decreases by the same factor, i.e. we set ol =
2

o

In particular, in figure 1 the Pys of detector (10), of the
GAMF, and of the GASD are plotted versus the SNR, for
N =8, K = 16 and several values of H. Note that H =1
refers to unresolved targets. The figure shows that, increas-
ing the radar resolution capabilities and suitably exploiting
them, can produce a significant detection gain. Inspection
of the figure also highlights that the corresponding curves
of the GAMF and of the GLRT-based detector (10) inter-
sect and, in particular, the GAMF outperforms the one-step
GLRT for properly high values of Py; remarkably, for H = 4
the GAMF outperforms the GLRT for all values of Pygs of
practical interest (P; > 0.5). The GASD is, instead, poorer
than the other two receivers, but the loss is always less than
2.5 dBs (P; = 0.9, H = 1). Finally, the loss of the GAMF
and the GASD with respect to detector (6), namely the one
which possesses perfect knowledge of the covariance matrix
M, can be read off figures 2 and 3 for N = 8§, K as a pa-
rameter, H = 2 and H = 4, respectively. Inspection of the
figures highlight that the loss of the proposed detectors, al-
though not negligible, is acceptable for reasonable values of
the sample size (HK).

5. CONCLUSIONS

In this paper, we have designed and assessed two-step
GLRT-based decision rules to detect extended targets in
homogeneous environment.

In particular, we have shown that

e the GAMF and the GASD have the CFAR property
with respect to M;

¢ GLRT detectors do not suffer collapsing loss;
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K=16

5 10

SNR

Figure 2: P; versus SNR of detector (6) (solid curve),
of the GAMF (dashed curves), and of the GASD (dotted
curves) for N =8, Ps, = 10~%, H =2, and K as a param-
eter.

e the performance of the GAMF is comparable with
that of the one-step GLRT;

e the GASD has an acceptable loss with respect to the
plain GLRT.

In conclusion, we can state that the modified approach is
superior to the plain GLRT: in fact, it leads to simplified
structures and, in case we resort to the GAMF, it does not
experience any performance degradation. Nevertheless, al-
though the GAMF outperforms the GASD in homogeneous
environment, the latter is somewhat more robust than the
former in that it keeps the CFAR property also when sec-
ondary data possess a common value of the power different
from that of the cells under test [13].

It still remains to assess the capability of the proposed
detectors in rejecting signals that are misaligned with the
steering vector. This is the object of current studies.
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Abstract

This paper evaluates the performance of several
reduced-rank adaptive matched field processing (AMFP)
algorithms for passive sonar detection of quiet targets in
littoral environments. Effective rank reduction improves the
stability of adaptive beamformer weight calculation when
the number of available snapshots is limited due to source
motion and other nonstationarity in the data. Here, five
reduced-rank algorithms with various criteria for subspace
selection are systematically evaluated within a common
simulation framework incorporating moving sources and
either long or short observation times. For each simula-
tion, the reduced-rank algorithms are compared for per-
Jformance (measured by output signal-to-interference-plus-
noise-ratio) versus subspace rank, with the full-rank mini-
mum variance (MVDR) beamformer serving as a baseline.
The algorithms each have different strengths and weak-
nesses, which are discussed in detail.

1 INTRODUCTION

Matched field processing (MFP) has been widely pro-
posed as an array processing technique for passive sonar
detection and localization with vertical line arrays in lit-
toral environments. MFP exploits the coherent multi-
path of signals propagating in the shallow-water waveg-
uide by incorporating propagation physics into the com-
putation of “replica” (steering) vectors from which beam-
former weights are derived, enabling target detection and
accurate target localization in range, depth, and bearing.

For an array with IV elements, each N x 1 replica vector

*This work was sponsored by DARPA-TTO under Air Force contract
F19628-95-C-0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not necessarily endorsed by
the United States Air Force.
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¥ is normalized such that 7% = N. The MFP weight
vector w is derived from the replica vector ¥, and the MFP
output power is then computed as

Purp () = 07 (9)Kii(¢), o))

where ¢ represents spatial look direction (usually range and
depth) and where

L
5 1 H
=_§ 2
K Ll=1z1x, 2)

is the sample covariance matrix, computed as a summation
of outer products of N x 1 data snapshots z;.

The conventional, or Bartlett, MFP processor (CMFP)
computes a weight vector that is a scaled version of the
replica vector, @W.(¢) = ¥(¢)/N , where the scaling en-
sures the unity gain constraint, ¥ (¢)'(¢) = 1. CMFP
suffers from high strong-source sidelobes that can obscure
detection and degrade localization accuracy.

The standard adaptive MFP (AMFP) processor, called
minimum-variance, distortionless response (MVDR),
computes a weight vector that is a function of both the
replica vector and the sample covariance matrix:

_ K~'9(¢)
7H (¢)K~15(4)
The MVDR output is then given by

€)

Pavon(d) = (T (@R 30)} . @

Compared to CMFP, MVDR provides significant interfer-
ence rejection and sidelobe suppression through the adap-
tive nulling of K1, resulting in superior target detection.
However, MVDR output is very sensitive to mismatch be-
cause the action of K~ in (3) causes target self-nulling
when the replica vectors ©(¢) are mismatched, and because




K1 itself may be estimated inaccurately when not enough
snapshots are available for the computation of (2). It is the
latter problem that is the focus of this paper.

Under the assumption of Gaussian noise statistics, Reed
etal. [7] showed that the SINR power loss p incurred by us-
ing the sample covariance matrix K to compute the MVDR
output instead of the true data covariance matrix K has ex-
pected value £(p) = (L - N+2)/(L+1),where L and N
are defined as above. In practice, the number of snapshots
L available to compute K is limited by source motion and
other nonstationarity in the data. However, SINR losses o
of 3 dB or more are incurred if L < 2N, a significant con-
straint for large arrays.

One method of addressing both the self-nulling and the
limited-snapshot problem in MVDR processing is to apply
diagonal loading to the weight computation:

(K + o3(o)1)15(¢)

Wz (9) = T ($)(K + o2()1)~15(g) ’

®)

where the load level o3(¢) is chosen to satisfy a white
noise gain constraint [2] and is designed to minimize the
effects of poorly estimated eigenvectors of K in the weight
computation. The diagonally-loaded MVDR output is then
computed as in (4), with @,,,, replacing 1,,. Diagonal
loading significantly reduces the SINR power loss p (ex-
pressed above for unloaded MVDR), even when the number
of snapshots L is less than the array size V (but still enough
to capture all the source energy in the data).

In cases where the number of snapshots L is less than
the array size IV, however, K is less than full-rank, and the
inverse K~! must be replaced by an approximation K1,
Rank reduction accomplishes this by first estimating K
with a reduced-rank approximation K (of rank P, P <
min {NN, L}) and then essentially performing the inversion
in the lower-rank space. The combination of diagonal load-
ing and rank reduction, then, provides meaningful AMFP
output in “snapshot-starved” situations. In the following,
several methods for determining the reduced-rank approx-
imation K are detailed, and the resulting reduced-rank
AMFP algorithms are systematically evaluated by simula-
tion, with the full-rank, diagonally-loaded MVDR (MVDR-
DL) serving as a baseline.

2 RANK REDUCTION ALGORITHMS

The first two rank reduction algorithms examined here

are eigenvector (EV) filtering algorithms. Let the eigenvec-
tor decomposition of K be given as

1, b}

K =UXU¥" = Z ol aH (6)

=1
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where U = [ @) 1, @y | is an orthogonal matrix
whose columns are comprised of the eigenvectors @; of K
and ¥ = diag(0?,02,...,0%) is a diagonal matrix whose
diagonal elements are compnsed of the exgenvalues o? ofK
(usually ordered such that 67 > 0% > ... > 0%).

The EV filtering algorithms approximate K with a rank-
P approximation K , where

Kgr = UxpU¥ = ZUR apad Q)

and £p = diag(oy,, Ohys-- ,0%.,0,...,0). Note that
N — P eigenvalues have been set to zero (filtered) and the
remaining P eigenvalues have been re-indexed to be the first
P eigenvalues of g (so that there is an implicit reordering
of the columns of U in (7) as well).

The two EV filtering algorithms are distinguished by the
criterion used to select which eigenvectors to retain in K g.
The signal coherence criterion (SCC) [4] selects for each
look direction all eigenvectors that have high correlation
with the replica vector 7(¢), i.e.,

@2 5(8)|° > 7 15))* , @)

where +y is some scalar constant; setting v = 0.5, for exam-
ple, retains those eigenvectors with correlation within 3 dB
of the maximum. If, for a given replica vector, no eigenvec-
tors satisfy (8), SCC reverts to the full-rank MVDR-DL out-
put (full nulling). Note that the criterion (8) is such that both
the reduced-rank subspace and the dimension P of the sub-
space will vary with spatial parameters ¢. For SCC, then,
the only eigenvectors of interest are those that have high
correlation with the replica vector in the look direction,; all
other directions have an infinite null place on them.

The direct form (DF) algorithm [8] retains the P
eigenvectors-eigenvalue pairs that maximize, for each & (),
the ratio

|@f5(9)|” /o2 . ©)

The DF criterion again is such that the subspace choice
varies with spatial parameters ¢, although the rank P is
fixed for all ¢. The DF criterion selects the subspace that
minimizes MVDR output power over all P-dimensional
eigenvector bases, which maximizes output SINR under
ideal conditions. Practically, however, the DF criterion
needs to be applied subsequent to diagonal loading to re-
duce the sensitivity of (9) to small eigenvalues (and cor-
responding eigenvectors, which may be inaccurately esti-
mated) during subspace selection. Because both SCC and
DF select a different subspace for each look direction, both
algorithms perform extremely well when the replica vectors
and eigenvectors in (8) and (9) are estimated accurately.
Once Kp is determined, the reduced-rank MVDR




weight vector wgr(¢) is computed as

- K5 9(9)
=R\ 10
) = S K 5(9) 40
where
P
Kp' = (oh +03(¢) ' ir.dR, 1)

=1

(cf. equation (7)). The reduced-rank MVDR output is then
computed as

PryvDRan (9) = T8 (8)KTR() . (12)

A third EV-based algorithm that takes a different ap-
proach to rank reduction is the dominant mode rejec-
tion (DMR) algorithm [5]. In the DMR algorithm, Kg
is constructed by retaining the largest P eigenvalues of
K, but the remaining N-P small eigenvalues are aver-
aged instead of filtered. Thus, Kgp = UZgU¥ | where
Sr = diag(o?,0%,...,0%,a,0,...,0) and a is the av-
erage of the smallest N — P eigenvalues. The reduced-
rank MVDR weight vector @g, is then computed as in (10)
and the reduced-rank MVDR output PyyvpRrpg (¢) as in
(12). The DMR algorithm is such that adaptive nulling
still occurs in (10) in the directions of the eigenvectors with
highest-energy eigenvalues (the “dominant modes™), but the
averaging of the “noise” eigenvalues reduces sensitivity to
poorly estimated noise eigenvectors. DMR selects a fixed
reduced-rank subspace for every look direction, so it is com-
putationally fast compared to SCC and DF.

Cox and Pitre [1] proposed a modified version of DMR
that employs “mismatch protection,” where for each look
direction ¢, eigenvectors having high correlation with the
replica vector 7(¢) (measured by a criterion similar to (8))
are excluded from consideration as dominant modes. While
this prevents self-nulling of targets of interest, it also al-
lows sidelobe leakage from interferers in the directions of
the “protected” eigenvectors. For this reason, DMR is im-
plemented here without mismatch protection.

The last two reduced-rank algorithms examined in this
paper are based on the modal decomposition (MD) [9] of
K. Here, both data and replica vectors are transformed from
phone space into mode space:

Uy = Tyt (13)
K, = T,KTH, 14

where 7, is the “mode replica” vector, K,, is the modal
covariance matrix, and T,, = (Q7Q)~'Q¥ is the mode
transformation matrix derived from the mode space ma-
trix Q, whose columns are mode functions sampled at the
depths of the vertical line array.
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Mode filtering then takes place in the mode domain, with
K i computed by retaining P rows and columns of K, and
deleting the other N-P rows and columns. The advantage
of transforming into mode domain is that the mode func-
tions have an easily understood physical meaning. For ex-
ample, retaining low-order modes filters out surface energy,
because only higher-order modes are excited near the sur-
face. Thus, the mode-order (MDO) algorithm is an MD-
based algorithm that selects as its reduced-rank subspace
the P lowest-order modes, a subspace based on physical
considerations and essentially independent of the data. A
more sophisticated (but still data-independent) mode-based
algorithm is the mode-select (MDS) algorithm, which se-
lects a position-dependent subspace of modes, depending
on which modes are most excited at each range and depth
according to the propagation model.

Once K g has been computed, the reduced-rank MVDR
weight vector is computed in the mode domain as

Kz Um(9)
TH(OKE' T (4)
and reduced-rank “matched mode” power is given by

PMODERg (8) = Bh o ())Kmme(8).  (16)

Note that the mode functions in Q are not orthogonal un-
less the vertical line array spans the water column. Thus,
the mode transformation T, may not be orthogonal, and
this needs to be accounted for in comparing matched mode
output in (16) to matched field output in (1). In the simula-
tions presented here, however, the vertical line arrays span
most of the water column and the modes vectors are approx-
imately orthogonal.

ﬁma (¢) =

(15)

3 EVALUATION OF REDUCED-RANK
AMFP ALGORITHMS

In order to evaluate the various reduced-rank AMFP al-
gorithms, the following simulation analysis was performed.
Simulated data was generated with a strong surface inter-
ferer at depth 6m moving at 6 m/s toward the array and
a quieter submerged target at depth 30m moving at 3m/s
away from the array. The array was assumed to be a bottom-
moored, vertical line array with N=30 elements separated
by 5.7m and total aperture ~170m. Replica vectors were
computed with environmental parameters and bathymetry
for the Santa Barbara channel, using data collected dur-
ing the 1998 Santa Barbara Channel Experiment (SBCX);
water depth for the Santa Barbara channel was approxi-
mately 200m. The replica vectors were computing using
output from the KRAKEN normal mode propagation model
[6], with an adiabatic approximation to account for range-
dependent bathymetry. The simulations assumed 7o envi-
ronmental mismatch, meaning that a simulated source at a




given location was exactly matched to the replica vector at
that location. Data was simulated for 101 seconds and pro-
cessed at a frequency of 235 Hz, using a 1-second FFT win-
dow.

In Simulation 1, all 101 snapshots were used to com-
pute the sample covariance matrix. Figure 1 shows
the CMFP and full-rank MVDR-DL range-depth ambi-
guity surfaces assuming interferer power 140 dB, tar-
get power 130 dB, transmission loss ~64 dB, and noise
power 70 dB. The input (phone-level) SNR was thus
(130 — 64) — 70 = —4 dB. Note that while the MVDR-DL
background is lower than the CMFP background (as ex-
pected), the motion of the interferer over 101 snapshots
causes a spreading of the interferer energy that almosts en-
tirely masks the weaker submerged target. For these sim-
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Figure 1. MFP ambiguity surfaces from 101s
of data. Gray scale units are dB re 1 uPa/Hz.

ulations, output signal power for an ambiguity surface was
measured by the power at the midpoint of the known tar-
get path, while output noise was measured as the 75th per-
centile of the ordered output powers of the entire surface.
Defined in this way, the MVDR-DL output signal was 63.3
dB, while the output noise was 59.5 dB, resulting in an out-
put SINR of 3.8 dB. Note that this definition of output SINR
does not necessarily take into account source localization.

Figure 2 plots the output SINR of the five reduced-rank
AMFP processors as a function of processor rank. Because
interference motion over 101 snapshots consumes several
adaptive degrees of freedom, little is gained over the base-
line, full-rank MVDR-DL by performing rank reduction.
In this example, the best performance was obtained by the
Rank-10 MDO, for which a subspace with the ten lowest-
order modes provided the best combination of filtering in-
terferer energy at the surface and retaining target energy.
As the rank of the MDO processor increased (allowing suc-
cessively higher-order modes), more target energy was re-
tained but less interferer energy was filtered. The proper
number of low-order modes to retain may be predetermined
from physical considerations based on the parameters of the
problem (source depths, water depth, etc.); this is the utility
of mode-based algorithms.
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Figure 2. Reduced-rank AMFP output SINR
versus processor rank. Base (full-rank
MVDR-DL) and SCC are independent of rank
and are identical for this example.

The only other algorithm to attain better performance
than the baseline was DF, which will always perform bet-
ter than the baseline as long as the target eigenvectors are
selected in the target look direction. The nature of the DF
criterion (9) is such that sources will appear in fewer look
directions than in the full-rank baseline, because source en-
ergy is filtered if not retained. In Simulation 1, a DF rank
of 3 was needed to retain the target in the target look direc-
tion — thus the jump in performance at rank 3. Note that the
SCC algorithm, which also selects variable subspaces for
each look direction, also will perform better than the base-
line as long as the target eigenvectors are selected by (8) in
the target look direction. For this example, the SCC output
was identical to the baseline, meaning that no eigenvectors
passed the criterion (8) in any look direction; this again was
due to source motion.

Figure 3 shows the ambiguity surfaces for the two best
reduced-rank AMFP processors, Rank-7 DF and Rank-10
MDO. Note that in the MDO surface there is a broadening
of the target peak. This “widening of beams” is characteris-
tic of mode-based processing and can be considered advan-
tageous in countering motion effects over long observation
times.

In Simulation 2, only 21 snapshots in the middle of the
time interval were used to compute the sample covariance
matrix (but the simulation data was otherwise the same as
in Simulation 1). Figure 4 shows ambiguity surfaces for
CMFP and full-rank MVDR-DL. Because the original sam-
ple covariance K (30 x 30) was rank-21 in this case, both
K and the replica vectors 7'(¢) were projected onto the sub-
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Figure 3. Reduced-rank AMFP ambiguity sur-
faces from 1015 of data. Gray scale units are
dB re 1 uPa/Hz.

space spanned by the principal 21 eigenvectors!. Thus,
“full-rank” MVDR-DL has dimension 21 here and already
involves some rank reduction from the original dimension
of 30. Note that with 21 snapshots, source motion is much
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Figure 4. MFP ambiguity surfaces from 21s of
data. Gray scale units are dB re 1 yPa/Hz.

less of an effect and the source peaks (especially the target
peak) are much more localized in the MVDR-DL ambigu-
ity surface. MVDR-DL output SINR was computed at 8.43
dB, an improvement of almost 5 dB from Simulation 1.

Figure 5 plots the output SINR of the five reduced-rank
AMFP processors as a function of processor rank. First,
note that DMR performance approaches the baseline as the
rank approaches the maximum of 21. This is because K g
constructed using the DMR approximation becomes closer
to K as the rank increases. However, note that DMR ap-
proaches within 1 dB of the baseline once the rank is greater
than or equal to the number of “dominant modes” associated
with the two sources — here, a rank of 7.

The DF algorithm, on the other hand, performs ex-
tremely well for low ranks: with less source motion over
21 snapshots, the criterion (9) effectively selects the target
eigenvectors at the target location and selects only noise

! The deleted subspace contains essentially zero energy but would affect
adaptive weight computation if not deleted.
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Figure 5. Reduced-rank AMFP output SINR
versus processor rank. Base (full-rank
MVDR-DL) and SCC are independent of rank.

.

eigenvectors at “background” locations. As the processor
rank increases, the DF processor loses this resolution be-
tween target and background locations and performance ap-
proaches the baseline. Similarly, the SCC criterion (8) for
Simulation 2 selects the target eigenvectors at the target lo-
cation and nowhere else, resulting in a performance increase
over the baseline?.

Finally, the mode processors MDO and MDS require
higher ranks to achieve good performance, but performance
is comparable at rank 9 or so, still significant given that the
subspaces are selected independent of the data . Figure 6
shows selected reduced-rank ambiguity surfaces for this ex-
ample.

4 DISCUSSION

This paper examined several reduced-rank adaptive
matched field processing algorithms for detecting quiet tar-
gets in littoral environments. Using simulated data with
a strong, moving surface interferer and a quieter, mov-
ing submerged target, it was demonstrated that process-

2SCC does not converge to the baseline as rank approaches 21 because
SCC does not have constant rank versus look direction.

3The fact that the MDO/MDE curves approach a higher output SINR as
the rank approaches 21 is somewhat misleading because there is a differ-
ent rank-21 baseline MVDR-DL in mode space, formed by projecting the
modal covariance K, and mode-space replicas onto the subspace spanned
by the 21 lowest-order modes. The projected (21 x21) modal covariance is
significantly nonorthogonal, leading to artificially low AMFP output pow-
ers in certain look directions. The higher output SINR for the mode meth-
ods in the baseline/limit is thus due to artificially low output noise values
in the ambiguity surface.
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Figure 6. MFP ambiguity surfaces from 21s of
data. Gray scale units are dB re 1 yPa/Hz.

ing over shorter observation intervals effectively combats
the effect of source motion and produces better AMFP de-
tection performance. It is with shorter observation inter-
vals (and the accompanying scarcity of snapshots), how-
ever, that rank reduction is important in computing adap-
tive weights. Among the reduced-rank AMFP algorithms
investigated, best performance was shown by those algo-
rithms that vary the reduced-rank subspace with look direc-
tion, the direct form (DF), signal coherence criterion (8CQ),
and mode-select (MDS) algorithms. However, environmen-
tal mismatch was not incorporated into this study, and all
three algorithms depend on accurate propagation models.
Sensitivity of the algorithms to environmental mismatch is
thus a topic for future study. By contrast, the other two al-
gorithms, the dominant mode rejection (DMR) and mode-
order (MDO) algorithms, compute a single reduced-rank
subspace for every look direction and thus are both faster
and simpler than the others. Predictably, these constant-
subspace algorithms do not perform as well in the best case
(Simulation 2).

Mode-space rank reduction allows subspace choices mo-
tivated by physical considerations essentially independent
of the data. Thus, the mode-order (MDO) algorithm, imple-
mented here by selecting low order modes that are presum-
ably only excited below surface depths, was able to achieve
slightly better performance than the others in Simulation 1
for a long observation time, where interferer motion pre-
vented effective rank reduction in the eigenvector domain.

Selection of reduced-rank subspaces that are indepen-
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dent of data also provides some degree of robustness for
very-low-snapshot cases, where criteria such as SCC and
DF that depend on eigenvector correlations may become in-
accurate. Degradation of reduced-rank AMFP performance
as the number of snapshots becomes even smaller relative to
the array size is thus another topic of further study, one that
becomes increasingly important the larger the array size.

Finally, the algorithms need to be validated on real data.
Initial results from the SBCX data set previously shown by
the authors [3] indicate that reduced-rank AMFP can indeed
be applied effectively on real data. Further validation on
more difficult cases is forthcoming.
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Introduction

The focus of this paper is to investigate the application
of wideband adaptive array processing techniques to the
problem of radar imaging. In particular we are interested in
joint range-angle estimation with angular resolution

improvement for small, relative to A, antennas. The
simulations and experimental results indicate that this
approach is viable in a practical sense, and yields
significant angular resolution improvement over
conventional methods.

The approach uses conventional Fourier techniques
for downrange information and uses adaptive
beamforming for the azimuth dimension. The basic
approach is to transmit a wideband set of continuous wave
signals, then apply spatial resampling to the received data
to correct for the fixed element spacing, then Fourier
transform this data to extract range information. We then
have a spectral estimation problem at each range cell. By
using data associated with each range bin, the angular
spectrum is computed using a minimum variance spectral
estimate. In general, adaptive array theory is based on the
narrow band requirement that the array aperture size is
much less than the inverse relative bandwidth. This implies
that plane waves are parameterized primarily by their
angle of arrival. For this work the narrowband assumption
is not valid since we will be using bandwidths of at least
20% of the carrier frequency. Spatial resampling can
estimate the array data that would occur if the antenna
spacing were varied physically as a function of frequency.
See [2] for a discussion of spatial resampling applied to
underwater acoustics. Another problem that must be
addressed is that parametric spectral estimation methods
require a covariance matrix to be estimated from multiple,
uncorrelated snapshots of the array output. We introduce a
method that amounts to an induced Doppler shift that can
be used to generate the required data necessary for angular
spectral estimates. The final result is a range-angle plot of
backscattered energy.

Signal Model and Formulation
Consider the case of a superposition of plane waves

incident upon a receiving array. These plane waves are the
backscattered energy from objects in the field of view of
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the transmitter. Assume objects are in the far field so the
plane wave assumption is valid. The incident plane waves
can be parameterized by their angle of arrival as shown in
Figure 1.

Y

Y,

(N-1)d

-

Uniform Linear Array
Geometry

Figure 1. Uniform linear array geometry.

A narrowband incident field with wavenumber vector K is

present. Vé‘ =k =2af/c,, where c, is the free space

velocity. In the X-Y plane k= k(sin@,cos @), with
6 measured clockwise from the Y-axis. The sensor
positions are given by 7 = (x, y,)" . The output of each
sensor is then given by

V(k,7)=Ade " M
Applying this to the uniform linear array geometry above
yields the baseband output at each sensor as

V(n)=Ae ™% ne0:N-1 @

with d the inter-element distance.

Given that range information requires signal
bandwidth, consider a point target at a distance 7, from

the origin. A CW transmitter radiates a field that is
scattered by the target back to the receiver. The target is
modeled as a delta function with backscattering amplitude,

A(r,) = A=1, at the receiver.
B(r) = A(r,)6(r -r,) ©)
The transmitter generates a CW signal at frequency fm ,

2r

(4

with round trip travel time given by 7, = For

c

o

frequency f,, the received signal is:




. 2r, . 2r.
-J25fn (") ~J2mmAf (°'o/ )
“ =Ae ,

V,=Ae “@

where Af =%{1 and fg, is the total bandwidth used

and M is the number of steps. This equation is the discrete
(spatial) frequency Fourier transform of the target position

7, . Note that —jﬁ@i has units of cycles per unit distance,
C

[
or cycles per meter for example. Therefore a point target at

position 7, is transformed to M samples of a complex

2Af or 2jrBW 7

exponential of ‘frequency’, r, A
c, Mec,
convert this signal to the spatial domain, apply the inverse

Fourier transform, which yields

. To

. 2 fawr,
-1 —j2mm(°/B¥% ) n
I(n)=AY """ e 2 . ®)

This equation describes a SINC function with peak at
2 fow
CO
to the nearest integer and r is an arbitrary distance. The
SINC function provides interpolation for range values that

2fsw

are non-integer values of —=2"p
C

o

n = round( ¥), where round() signifies rounding

Increasing the

bandwidth, fg, , will increase the resolution but reduces
the maximum usable range due to aliasing. This method of
ranging is called FM-CW ranging and is well known for
imaging stationary scenes. The free space medium is linear
so superposition holds, allowing the extension of one
target to multiple targets or in our case scatterers
distributed in range (and angle). As will be shown in the

next section increasing bandwidth, £, gw » also affects the

spatial spectrum.

We then combine the FM-CW technique with the
angle of arrival results to describe the antenna outputs for
the M, CW linear stepped frequencies, with angles of

arrival from —%to% , incident upon N antenna

elements. Combining Eq(2) and Eq(4), and letting A=1,
the baseband antenna output for frequency m and element

n, for one emitter at range 7, and angle 6 is

V,(n,m)=
-j2amef e _jpatendsing - jan(-Ls I8 paing ®)
e c, e <, e M 2" ¢,
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Transmit frequency, f, = f, + (m —%—)Af and f, is

the center frequency of the antenna. The first exponential
term describes the phase information for range, and the
second and third terms describe the inter-element phase
due to the incidence angle. The second term describes the

linear phase shift across the array for incidence angle 6,
which is independent of frequency. However the third term
shows an additional phase across the array which is

dependent on frequency mAf . The affect of the last term
is to cause the angle of arrival to appear to vary as the
incident field wavelength changes. The angle of arrival
sweeps linearly from

A, (1- éK)a’sin@ radians

¢, 21,
to 2—%(1+£’Y—)dsin9 radians. (6)
¢, 21,

The angular sweep is proportional to the true angle. For
large angles of arrival the angular broadening is greatest.
Targets are smeared in range by the third term also.
Conventional delay and sum beamforming correctly
accounts for both of these affects, but for small antennas
the angular resolution will be poor. The set of received
signal samples from M frequencies, at N outputs of the
antenna array is formed into a matrix for processing.

Spatial Resampling

The array outputs must be properly focussed so that
the angle of arrival of a single plane wave for any given
frequency m will be constant. This is accomplished by
resampling the array outputs to correct for the constant

element spacing d. See [4] for discussion of spatial
resampling techniques applied to wideband angle of arrival
estimation for uncorrelated signals. For joint range-angle
estimation we have the additional requirement that the
antenna phase center for each resampled array output must
remain fixed at the center of the array. The spatial
resampling concept is motivated by treating the outputs of
the N element linear array as the result of spatially
sampling a continuous linear array. The resampling is
accomplished by approximating a continuous array by
interpolation of the given data and then extracting the
required samples at the new sampling interval required for
each temporal frequency m. Interpolation is
accomplished by inserting K —1 zeros between samples,
where K is the interpolation factor, to produce a vector of

length KN . A linear phase, low pass filter is applied to

6
the data. This filter has a cutoff frequency of 7_{—, where




@ is the maximum normalized spatial angle, typically
i%. A fast implementation utilizes the polyphase

filtering architecture [3]. The resampling process will
create a set of data that contains samples at varying
distances from the antenna phase center. To prevent the
algorithm from trying to sample beyond the ends of the

f min

[}
the affect of making the interpolated array spacing

array we introduce a scale factor [ = , which has

d appear fractionally smaller than the original by /£.
Consequently the steering vectors used later for angular
spectrum estimation will be corrected by [ also.
Combining these ideas with the bandwidth relation in (6) it
is easily shown that the resampled data for element 7, and
frequency m , from the interpolated array is given by

Y(n,m)=
K(n——]\[j
KN 2
interp| TOUNA ( J +
2 M
m—-—
L| M |/,
(M
where X, (*)is the interpolated array of length

KN .Y is a matrix of size M by N . The offsets into the
interpolated array are all relative to the array center at

—2-— . This procedure amounts to interpolation followed

by decimation of the original data.

Angular Spectrum Estimation

This section outlines the minimum variance spectral
estimation method used to derive the angular spectrum at
each range bin. Consider an array of N sensors whose
location and directional characteristics are known.
Assume that there are multiple signal sources whose
statistical characteristics are uncorrelated. A simple model
for the received signal y(¢) at the output of each element
can be expressed by:

YO =D a)x, @) +n(@), t=1,..,M ®)
I=1
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The vector a(y) is the spatial signature (Nx1) that depends
upon the angle of arrival y and x is a scalar associated with
the /th signal source and incorporates the time variation of
the signal. Assume there are L signal sources and M
uncorrelated snapshots. n(f) is addittive Gaussian noise.
The signal received by the sensors is y(f) and itisan N x 1
complex vector. As evident, the signal y(¥) is a linear
combination of the spatial signature and the additive noise.
When the geometry of the array is linear with equally
spaced sensors, the steering vector of the /th signal source
is

a(y, )=[1 W) g2 ej(N—l)a(vz,)]T,

a(y,) = kd siny, represents spatial frequency, and d

denotes sensor spacing. The source signal x(t) and the
noise n(t) are white Gaussian distributed with zero mean,
statistically independent of the field signal(s).
Consequently we have:

where

Efx(®)]=0, Elx@)x (0]=1,
E[n(®)]=0, Eln(tyn (9)]= 01 ©

where ' represents conjugate transposition. The stationarity
assumption extends to both it's temporal and spatial
properties. The spatial covariance matrix can be expressed
as follows:

R = Ely(t)y” (0] = A(#)A™ (%) + 671

L (10)
= Za(‘/’l)aH () + o’l
=1

The rank of the covariance matrix increases by one for
each incident plane wave.

For the linear array, the steering vector steers the
beamformer to the assumed propagation direction of the
incident field. The general form for the steering vector is:

- jkg %

€
e= : an

— kR Fn-
e JEN1 XN -1

The notation k,: denotes the phase shift due to the wave’s
propagation at each sensor.




Adaptive Beamforming

The basic approach here is to solve a constrained,
minimum mean-squared error, optimization problem.
Many algorithms have been developed using this concept.
The received signal y(f) from antenna array is expressed
as:

y(®) = a(y)x(r) +n(r) (12)
where a is the spatial signature of the desired signal.
Using the conventional beamforming approach described
above, we may form a weight vector w focus the array:

2Oy =wy(t) (13)
The objective is to maximize the output signal to
interference-plus-noise ratio (SINR). For constrained
optimization, instead of maximizing the output SINR
directly, we minimize the mean-squared value of the
weighted observations,

F, =E[|wHer=w”Rw (14)

subject to a look-direction gain constraint.

Minimum Variance Beamforming

Consider an ideal, unit-amplitude signal, assumed to

be propagating in the direction & . The notation for this

signal is e(f ). The idea is to apply the weight vector w

to the sensor output. Any signal from the direction
specified by e should have unit gain. Noise and signal
propagating from other direction should be suppressed. In
this case, the constraint optimization problem is:

min EUWH y'z] subject to Re[e” w] =1

1s)
where the constraint Re[eHW] =1 ensures that the ideal

signal has unit gain. The optimum weight vector that
solves the optimization problem is given by [1]:

Rle
Mo = R, 0

It is evident that the optimum weight vector depends
on two parameters: the correlation matrix R and the
direction of propagation & . As different directions are
scanned, the weights adapt to the signal and noise
component of the observations. The beamformer output

. H . .
power is P =W, Rwo , in the assumed propagation

direction. The output power of the minimum variance
beamformer is:
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P (E)=[e” (E)ReE] a7

Covariance Matrix Estimation

To estimate R from the available data, it must be

derived from LLD. samples of X, the observed data. The
approach utilized for deriving multiple snapshots is
perhaps the most important one for imaging since it can
yield an array that does not sacrifice degrees of freedom as
is required for sub-array averaging. This technique is based
on the use of a set of orthogonal, closely spaced, sub-
frequencies around each frequency : . If the transmitter is
swept around each of M frequencies, in L steps of step

size D % , then the L sub-frequencies form an orthogonal

set over a narrow frequency band. D is defined as the
total bandwidth of the induced Doppler shift. Thus we
have created a set of receive vectors X,,, that are

uncorrelated signals to be used in (16). The total
bandwidth utilized by the system is the same although it
has been more finely divided. The resulting data cube is of

size¢ N * M * L Ideally L would be equal to 2N since
it can be shown that this value yields estimates of R that
are within 3dB of optimal. The resampling process is
carried out for each frequency fm, , as described above.
After range compression is applied using the FFT (Fast
Fourier Transform), the corresponding groups of fm, are
used to build R for that range bin, as shown by

l -1 ,
R =—>% X 18
m L IZ=0: m+1—% m+1—-;'— ( )

Next is a brief description of forward-backward
averaging, which is an effective way to improve a
correlation matrix estimate. A ULA (uniform linear array)
steering vector remains invariant up to a scaling if it’s
elements are reversed and complex conjugated. Let J be an
NxN exchange matrix whose components are zero except
for the anti-diagonal. Then for the ULA it holds that

I5°(g) =" D?5(g) .
The backward array correlation matrix is therefore

R, = JR'J. By averaging this matrix with the normal
one we get the new correlation matrix

R, =%(R+JR‘J). (19)

By combining the methods outlined above we are able to
estimate R with a great deal of robustness. In general, R
will be full rank but may have a high condition number.




We wish to obtain reasonable estimates in all normal
imaging environments, so for this reason we include a user

controllable amount of diagonal loading o’l ,added to R
to set the dynamic range of the image.

Jammer Suppression

Jammers or unintentional interferers are removed by
simply turning off the transmitter and using the captured
data as an estimate of the jammer AOA and temporal
frequency. The Fourier transforms of the jammer signals
are used to form angular covariance matrices at each range
bin in the same manner as for imaging. Each R matrix is
then used to form an orthogonal subspace projection
matrix, Q, which is used to project out the interference at
each range bin.

Convertional Delay and Sum, 12 element, 8001200 MHz

Range — meters

°o
Amgle —degrees
Figure 2. Conventional beamforming, using a 12-
element array with 8 targets.

Computer Simulation Results

A computer simulation has been created to verify the
proposed scheme for adaptive imaging. Figure 2 shows an
image created by performing conventional beamforming
on a 12-element array, using 800-1200 MHz bandwidth,
and 40 frequency steps. The 8 targets are not discernible
due to the antenna sidelobes. The 5 targets at 5 meters
downrange are not separable. Figure 3 uses a 12-element
array and 4 sub-frequencies but uses spatial resampling to
achieve the best possible imaging. All targets are clearly
discernible above the noise floor.
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12 element adaptive array, 800-1200 MHz bandwidth
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Figure 3.
targets.

Resampled, 12 element array with 8

Focussed, 12 element with Jammer, 8001200 MHz bandwidth
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Figure 4. Same as Fig. 3, plus jammer.

Focussed, 12 element with Jammer, 800-1200 MHz bardwidth
L g

T —T T T T o

Downrange distance, meters

-850 -&0 -0 L 80 8

- ) 20
Azimuth Angle, degrees

Figure 5. Same as Fig. 4 with jammer suppression.




Experimental Results

The imaging system consists of a 4-element uniform
linear array for receive, and a wide beamwidth hom
antenna for the transmitter. The source is stepped from 800
MHz to 1200 MHz in 80 increments. The system center

F,

wavelength and A = ¢ /F,. Transmit power is 5dBm
into the horn antenna. The receiver consists of 4 vertical

half wave at A_, dipoles, spaced at half wave at A,

intervals, followed by matched (equal group delay) receive
channels, with 60dB gain, and each mixed to a 102.5 KHz
IF frequency. The transmitted signal is tapped off at the
antenna and mixed by the LO to 102.5 KHz to form the
reference signal. The 5 signal channels are sampled at 10
KHz each, thus converting each signal to 2.5 KHz discrete
time due to undersampling. This signal, being % of the
sample rate is then converted to complex baseband by
mixing with digital quadrature oscillators, followed by low
pass filtering. Finally, one set of 4 complex signals,

representing S, for each antenna is created by dividing

each channel’s baseband signal by the reference signal to
derive the round trip phase and amplitude response at each
antenna element for each frequency. The system is placed
in an anechoic chamber for testing. Test objects consist of
various metal cylinders, approximately 1-2 wavelength in
size and placed from 3 to 8 meters away. It should be
noted that our anechoic chamber is not highly effective at
absorbing energy at 1GHz, so there is some clutter energy.

frequency s, = 1 GHz or approximately 33cm

Focussed, 4 elemert array, 2 targets+clutter, 800—1200 MHz

sl
€
£
H
o
o
st
al
2t
& @ w0 > o m % e W
Azimuth, degrees
Figure 6. One target at 4.5m downrange and -30°

crossrange, A larger cylindrical object is at 5.5m
downrange and 25° crossrange.
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The experimental array uses the same frequency and
bandwidth parameters as the simulation except has 4
elements, utilizes forward-backward averaging, and 4 sub-
frequencies. This array could benefit from using more sub-
frequencies to improve the estimate of R, but system
constraints restricted the available data storage. Future
hardware will allow more data storage as well as additional
antenna elements. Diagonal loading is used to set the
dynamic range of the image and stabilize the correlation
matrix estimates. Figure 6 shows a image of 2 targets in
the chamber. The available space is fairly small,
consequently the target scenario is simple. Figure 5 shows
a higher level of near field clutter as well as some emitted
signal from the transmitter horn.

Conclusion

This paper has outlined an approach for radar imaging
using wideband array processing techniques. In particular
the use of spatial resampling to convert signals to a
narrowband model, and an induced Doppler shift for
angular spectrum estimation are combined for imaging.
Simulations were validated by an experimental 4-element,
stepped CW system. Ongoing work will investigate
performance issues, antenna element dispersion and
calibration. A twelve element system is currently being
developed for further study of this approach. This
approach may be useful for radar applications that utilize
conformal antennas or foliage penetration systems that
utilize low frequencies for imaging and area surveillance.
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ABSTRACT

Echo imaging techniques have been shown to be effective in
both demonstrating the reflectivity patterns and detecting
different kind of flaws in many engineering fields. Further
modifications in such approaches depend solely on the
variability of the medium under investigation, the temporal
resolution of the source waves and the spatial resolution of the
source-receiver array. Impact echo imaging aimed at high
resolution gains using conventional processing techniques
(deconvolution and migration) suffers from inherent problems
such as noise degradation, nonstationarity of the mediums,
incompleteness of the data set, and exactness of the modeling
parameters. In this work, we intuitively propose a new imaging
approach that employs the apriori knowledge of the medium to
predict a robust modeling structure of the medium. This model
will then be used in an optimum way to minimize the squared
error between the observed data and the exact medium. To
guarantee a solution for this ill posed inverse problem, the exact
medium is constrained to satisfy the predicted model and the
normal equations resulted from this minimization process are
weighted by a positive definite function to maintain stability and
prevent divergence. To achieve high temporal resolution, we
utilize from the ability of wavelet transform in decomposing the
data into non-overlapping spectral bands and performing both
time varying spectral prewhitening and adaptive deconvolution
to suppress the source signature. For high spatial resolution, we
will perform the constrained estimation approach in each sub-
domain to minimize the computational effort. To evaluate the
performance of the proposed approach, we will conduct a
comparative study that manifests the achievements and the
limitations of this approach over the conventional echo imaging
techniques. To demonstrate the effectiveness of our approach in
handling near field and far field problems, we apply this
technique to detect various flaws in post-tensioned concrete
bridge structures.

1. INTRODUCTION

Echo imaging techniques aiming at high-resolution
reconstructions are recently paid attention to the ill posed
problem in the reconstructed data. The existence of high
frequency contribution with zero Eigen value clustering
makes the solution for the inverse problem unstable, and so
spurious noise and miss positioned reflectors will appear in
the reconstructed images. The conventional way to solve
such problem is to use either Tikhonov regularization theory
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[1], diagonal loading in array processing [2], and spectral
prewhitening [3]. Several researchers look to this problem
from different prospective. In [4] a constrained maximum
smoothness approach using Tikhonov regularization theory
was considered to reconstruct incomplete seismic data. The
assumption of maximum smoothness and the penalizing
procedure used there makes this idea appealing. However,
such approach depends on an expensive iterative technique,
data dependent regularization process, and noise free
environment. Bounding the total variation of the reflectivity
pattern by reducing the requirement of maximum
smoothness is considered by [5], and [6]. While in this way,
data dominated by spatially high frequencies can be
reconstructed. Imposing unsupervised bounds on the model
parameter variations will distort image details. Moreover,
for fast processing a preconditioning approach is necessary
that minimizes the distance between the system Eigen
values clusters and reduces the system’s matrix condition
number. Such preconditioning procedure is expensive and
requires using another calculation space. The weakness of
the total variation approach can be resolved by introducing a
stabilizer function that limits the area where significant
variations of the model parameters and/or discontinuity
occur. Such stabilizer is proposed by [7] and used to
penalize dispersed and smoothed distribution of the
parameters with all values different from the apriori model.
While well-focused distribution with a small departure from
the apriori model has a small penalty function. Although,
such approach is convincing, it tends to produce the smallest
possible anomalous domain. To overcome this problem
another penalizing constraint is applied on the material
property to limit the model variation with respect to its
background, the existence of noise limits such achievement
and tends to smudge the image.

In this work, we propose another approach that addresses the
difficulties that faces echo imaging problem utilizing from
parametric modeling approach that uses regularization
techniques in numerical linear algebra. Herein, we will focus on
the mathematical formulation of the imaging approach,
limitations of conventional techniques to cope with image non
smoothness characteristics, robustness of the imaging approach
to small perturbations in data domain, and elegantly propose a
robust fast convergence solution that focuses image variations
without disturbing its details. This is achieved by combining
preconditioning conjugate gradient solver, temporal-spectral
weighting domain (Wavelet), and nearly optimal nonlinear




estimator. In this case, the problem is divided into minor
problems that are highly decoupled. Applying a denoising
approach to remove parameter variation due to noise and
constraining high frequency components in horizontal, vertical,
and detail domains tends to reform centered clusters that has an
improved condition numbers. As a result, a considered
improvement in temporal-spectral resolution of the
reconstructed images is achieved. This modification on both
reconstruction and computational requirement is achieved due to
the ability of wavelet domain to cope with noise, wavelet bases
nearly matches eigen vectors in low frequency domain which
tends to minimize the number of energy based coefficients.
Using conjugate gradient solver that needs O(n) computations,

where n is the number of nonzero coefficients makes the
convergence faster. Moreover, decomposing the domain into less
correlative sub domains that its features are locally estimated
and filtered, will resolve image details and minimize the effect
of parameters perturbations.

The paper is organized into four sections. The first section
formulates the echo-imaging problem in time-space domain and
points the difficulties associated with parameterized inversion.
In section 2, the problem will be formulated in the wavelet
domain and the concept of nearly optimal nonlinear estimator
will be introduced. In section 3, preliminary results of applying
the echo imaging approach to reconstruct reflectivity structures
of post tensioned concrete bridges will be addressed. The last
section summarizes the concepts achieved in this work.

2. Problem Formulation
Modeling and imaging of the synthetic data is escorted by the
noisy influence of the source-receiver geometry and both
coherent and non-coherent noise at the array surface. The
synthetic data at the surface of the array characterizes the
intertwined relation between both the reflectivity structure of
the model () and the noise (7). To distinguish the model,
data should be mapped into separate spaces that perfectly
characterize one from the other. Let us formulate the modeling
problem:
d(t,x) =T(z,x,t)*m(z,x) + n(t,x) 1
In equation (1) d represents the synthetic data at the array
surface, 7 is a transfer function that represents the
characteristics of the propagated waves through the imaged
medium. This function is implicitly achieved by solving the
wave equation in elastic medium [9. While (*) is a convolution
operator, () is the reflectivity model, and (7 ) is an additive
white Gaussian noise. Equation (1) can be represented in matrix
form as follows:
d=Tm+n 2)

Equation (2) shows that the model can be resolved if and only
if (T7') is bounded and (T7'n) is located in a non-
overlapped space with m . Based on the solution of the wave

equation, (T _1) is not bounded and (T _ln) is not white any
more. Due to instability of the inverse operator the power of the
noise is considerably amplified with the increase of spatial and
temporal frequencies. The conventional way of solving this
problem is by using preprocessing steps to diminish the noise

contribution on the data and then using an adjoint operator of
(T') to approximate its inverse[10]. The imaging (migration) of
the estimated reflectors can be determined by:

m,, =TTm 3)

In equation (3) ( T ) is the complex conjugate transpose of (T ).

The matrix (77) is a linear filter matrix that represents a
Hessian matrix for the denoised data correlation matrix
(E (dd )= mTTm ). Equation (3) represents the formal
migration technique called Kirchhoff [10]. Since the Hessian
matrix has both non-unity diagonal elements due to the
existence of spreading losses unaccounted for during imaging
and non-zero off-diagonal elements due to both correlation of
neighborhood pixels and non-smoothness of model parameters,
Kirchhoff imaging cannot correctly reconstruct the actual model
[9]. Kirchhoff imaging approximation is preferable when the
source-receiver geometry is very dense, reflectivity structure is
smooth, and the recording aperture is wide. Normally, these
conditions are rarely available and applying this approach yields
imaging artifacts that give fake reflectors and distort structure
details. However, this approach still can be used if we manage
how to use the apriori information of the model history and the
enhanced performance of Tikhonov theory. We will keep our
weak assumption that data is perfectly noise free, and formulate
a constrained regularization process that mimics the constrained
adaptive beamformer to limit the variations of out of aperture
data, to force the model to be focused on known data points, and
to penalize those events that diverge from our apriori model.
Starting by a normal regularization process that tends to find the
optimal model that minimizes the data energy subject to
minimum total variation energy. The parametric function is:

Pom)=|Tm—d| +ofpn—m,,|’ @)
The model that minimizes equation ~ (4) is :
m=[TT+ad]" (Td + amap,) (5)

Using constrained stabilizing function, by applying a
constrained matrix that depends on the apriori knowledge of the
model, equation  (5)becomes:
m=[TT +aCCl (Td +aCCm,, ) ©)

if @=0 in equation (6)then m = (TT)™ Td which is
the least square imaging. Due to the ill posed structure of the
Hessian matrix, this solution may lead to spurious oscillations
around sharp features. Applying the constrained least square
imaging leads to some form of Wiener filtering. The solution of
equation (6) is not trivial, where the system usually has the
following characteristics:

a. The Hessian matrix has wide distribution of Eigen
structures and (C'C) approximates noise covariance
matrix that tends to remove zero-clustered Eigen
values.

Hessian matrix is symmetric positive definite.

¢.  Hessian matrix depends on source-receiver geometry,
aperture limitations, medium acoustical impedances,
spectral weighting due to amplitude losses, and
autocorrelation function of source signature.
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d.  The regularization term has sparse distribution that
limits the achievement of fast transform methods.

e.  To minimize the regularized term energy, Low values
of o is to be used that will lead to the ill posed

problem.
Based on these characteristics of equation (6), the best
approach is to use an iterative procedure that achieves the best
estimate of (m ). Conjugate gradient techniques can be used to
achieve (m), but due to (e) the application of conjugate
gradient will be very slow and so a preconditioned conjugate
gradient solver is required [11]. Preconditioning is applied to
improve the condition number of the regularized Hessian
matrix. Let us assume that there exists a symmetric, positive-

definite matrix M that approximates [T T +aEC], then if
k(M - [7—" T+aCC ]) << k([T T+0oCC ]) we can iteratively
solve the preconditioned regularized problem much faster than
equation (6). Where k(A4) is the condition number of the
matrix A. A good choice for the preconditioning matrix is the

diagonal matrix M =1/+/diag TT+0CC). Rewriting
equation (6) using T=TM , C=CM ,and m=M"'m:
(ﬁ" +aCC }% =Td+ aéCmap, @)

Solving equation (7) using conjugate gradient technique
requires number of iterations I< [%\[I; ln(%)], where &
represents the factor by which the residuals is minimized. Using
£ =0.001requires number of iteration iS3.8\/-k— , and a
matrix-vector multiplication requires 0O(/) operations, where
(1) is the number of nonzero entries in the matrix. In our
problem kis not a small value even for the preconditioned

problem k 2= 10% . The complexity of the considered algorithm
without considering the influence of band-limited noise on the
problem is still very high. The influence of noise on the system
is not trifling and prefiltering process is not enough to resolve
signal arrivals from noise.

3. Wavelet Based Noise Removal and
Imaging

To enhance signal predictions and to improve Eigen structures
clustering of the regularized Hessian matrix a wavelet-based
approach is proposed. Our approach is utilizing from section 2
results and incorporating the prior knowledge on the reflectivity
pattern through simple models, which defines a set of wavelet
coefficients where (m ) is guaranteed to be there. The estimator
is optimized my minimizing the maximum risk of the entire
wavelet coefficients. Let us revisit the synthetic data modeling

of equation (2) and apply the adjoint operator ( T Ytoit:
Td =TTm+Tn 8)

The left side of equation (8) is part of the solution of equation

(7), to minimize the variation between estimated
model and actual one the second term of equation (8) needs to
be removed. It may drastically deteriorate the clustering

efficiency achieved by the regularization term and so enhance
the instability probability. The second term of equation (8) is no
longer white but it is still Gaussian due to the linearity of the

operator (T ). The problem is now how to remove the growing
effect of noise at high frequencies. Similar approach is studied
by [12] and clarified by [13]. The difference here is that noise
grows up with the increase of spatial and temporal frequencies,
which limits the use of a thresholding estimator with nearly
minimax risk. In order to achieve our goals a nonlinear
estimator based on linear estimation theory and thresholding is
to be achieved, then bounded scale variation to be determined.
Transforming equation (8) using orthogonal wavelet bases leads
to:
Wia =Wy +Wry ®)

The subscripts in equation  (9) are used to indicate filtered
parameters. Applying the same concepts of [14] for linear least

square estimator where W, =QW,, the optimal linear
operator Q is determined by:

0=[R,+R,I"'R, (10)

In equation (10), R,, and R, are diagonal correlation

matrices for the reflectivity model and the noise. Since
correlation matrices of either the model or the noise are not
available. We follow the same procedure described on [14] to
get an estimate of the filtered model correlation matrix and
noise correlation matrix. The problem in this approach occur
when the diagonal elements of Q is dominated by the noise
power. To limit such effect, we use a nonlinear version of the
estimator that employs a hard thresholding process for those
noisy events. For a Gaussian random variable, [15] proved that

using a threshold 7% =0 42log, L , the thresholding risk is

not much above that of linear minimax risk, where ¢ is the
noise standard deviation and L is the length of the data set.
Due to the structure of our problem, different thresholds are
used, where low frequency data can be processed using

Th=o01,4210g, (L/2), while the threshold for high frequency

data is determined by the maximum absolute value of the
wavelet coefficient in the range [L/ 2, L]:

- Rogl/d if oy2log(L/2) <mar) an
oo else

Decomposing this range may achieve better results where our

goal is to limit the influence of those data that lies at the border

of the Nyquist frequency with a marginal zone that ensures their

removal. Using equation (11) can still achieve improved

results. The values of ©,and O, are achieved by

o; =-(#75-median(abs(9i)), where 6, spans low frequency

wavelet coefficients and 8, spans high frequency wavelet
coefficients. The thresholded nonlinear estimator is now:
s _{QWd low,| 2 Th
=

0 |ow,|<Th (12




The reconstructed wavelet coefficients are highly clustered in a
way that strengthen the energy in limited number of coefficients
that approximate the eigen values within that band. This
reformation process will inherently improve the convergence of
the conjugate gradient solver discussed in section 2. Moreover,
due to the properties of wavelet domain, different wavelet levels
have minor correlative properties, which define each band as a
distinct problem that needs to be iteratively reconstructed. Using
this approach adds the flavor of nearly optimal noise removal
and fast convergence.

4. Results and Discussion

In this section an experimental simulation investigation will be
carried out to evaluate the performance of the developed wavelet
based echo-imaging technique. To generalize the results of
simulation, the influence of various flaw types within the post
tensioning ducts and within concrete structural elements used in
highway bridges will be included. The velocity and density
models are adopted from [16]. The force time function resulting
from the impact of a solid sphere on a solid body can be
approximated as a  halfcycle sine  wave  with

F(t)=F_, sin(%f), where F__is the maximum applied

impact force, and 7, is the contact time for the impact. The

impact time is of great influence on the achieved results, where
it determines the minimum size of the discontinuity or flaw that
can be resolved vertically [16]. Since the source waveform is
deterministic, using the wavelet domain to vertically deconvolve
the received data will greatly improve the vertical resolution and
remove the distortion effect of the source waveform on the
synthetic data.

To demonstrate the efficiency of the proposed approach in
enhancing both horizontal and vertical resolution of the
reconstructed images a 12-point diffractor model is used. The
reflectivity value of each one is assumed to be 1. The
propagation velocity is chosen to be the compressional velocity
of the concrete medium. The space between receivers is 5 cm
and the aperture is limited by 5-m.Figurel shows respectively
the model, zero-offset synthetic data, the image using Kirchhoff
migration [10], the image using [8], the image using {7], and the
image using our approach. As shown in Figurel the proposed
approach shows focused image with less artifacts than the other
algorithms. Figure 2 shows reconstructed images of the same
model contaminated by Gaussian noise, the synthetic data has
SNR =10dB . The proposed approach shows the ability of
removing the noise with affecting the actual positions of the
diffractors. Other techniques show spurious events that smear
diffractor locations and degrade their imaging capability. To
improve the performance of other techniques, we performed
wiener filtering to the data and then applied them. The results
show better localization to the actual diffractors and noisy
events that mimic them.

In this part of the paper, two post-tensioned concrete structures
with flaws will be studied. The first specimen represents a 3.66-
m by 1.22-m by .39-m-thick (12-ft by 4-ft by 15.5-in-thick)
concrete slab containing one 76-mm (3-in) diameter straight
corrugated steel-grouted duct and one 76-mm (3-in) diameter
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straight corrugated PVC-grouted duct with a wall thickness of
1.6-mm (1/16 —in). Voids were introduced inside these ducts,
including three voids with sizes of 0.13,0.28, and 0.46 m long
(5, 11, and 18 in long) in the steel duct, and two voids with
sizes of 0.15 and 0.47 m long (6 and 18.5 in long) in the PVC
duct. This model was used to evaluate the reliability of the
technique in detection of voids inside post-tensioning ducts.
Figure 3 shows the reflectivity model of specimen 1, synthetic
data with SNR=10, and the wavelet based image. The
parameters involved in this experiment are: spatial sampling
Ax =5cm , the impact time is#, = 20s , and sampling time
dt = 2 s . The results ensure the ability of the imaging process

in determining the exact location of the voids and their actual
sizes. A noticeable limitation appears at high spatial frequencies
where both signal and noise shares the same spectrum; the
imaging technique tries to focus the events while opposed by
noise. This limitation is confined by Ax and so can be
enhanced by decomposing the high frequency events using
wavelet packet bases that will significantly reduce the influence
of high frequency noise but will increase the computational
complexity. Also, reducing Ax will be significant but such
improvement will limit the feasibility of the process. Since
apriori knowledge of the structure is highly correlated with the
age of the bridge, applying predictive techniques to estimate the
data between consecutive sensors will resolve the problem.

The second specimen is a 0.91-m by 0.76-m-deep by 7.32-m-
long (3-ft by 2.5-fi-deep by 24-ft-long) concrete beam containing
one longitudinal 76-mm (3-in) diameter draped corrugated
galvanized steel duct and one 76-mm (3-in) and 1.6-mm-thick
( As-in-thick) PVC duct, which was also draped in the

longitudinal direction. Both longitudinal ducts contained nine
12.7-mm (0.5-in) diameter pre-stressing strands. There are also
three diffractors with sizes of 0.15, 0.3, and 0.47 m long (6,12,
and 18.5 in long) in the PVC duct. This model is used to
evaluate the reliability of the technique in imaging deep post
tensioned members and differentiating different flaw shape and
sizes. As shown in Figure 4, the existence of the flaws smears
the synthetic data and shows an impulse that spread all over the
z domain at each location of these flaws. The reason is that the
reflectivity values at these locations are so small with plus and
minus polarities. Such values with sharp edges will cause
unstable effect in the wave equation that will drive it to its
extreme conditions and so unstable results achieved. The
reconstructed image conserve both sharp and smooth details and
elegantly diminish the effect of the noise. The exact locations in
deep and within the concrete beam are also detected. Increasing
the spatial frequency and applying the nonlinear wavelet
estimator on wavelet packet will significantly improve both
temporal and spatial resolutions. Our observations indicate
combining both predictive estimation and wavelet imaging will
maximize the efficiency of this technique.

5. Conclusions

A novel imaging technique that preserves both temporal and
spatial details is proposed. The imaging approach utilizes from
the apriori history of the reflectivity pattern and uses this




information in an optimum way to estimate the corresponding
structure of the model. It applies a constrained parameterization
process that attends to minimize the total variation of the model
with respect to its history. Due to the limitation of aperture,
incompleteness of data set, and variability of medium
parameters, data will be dominated by high spatial frequencies
where noise there grows as function of data lengths. Such
occurrence will degrade the optimization process and enhance
probability of instability. To overcome these deficiencies, a
wavelet based imaging approach is anticipated that applies a
nonlinear estimation process to separate signal components from
noise corruptions. The algorithm shows superior results when
compared with standard and developed imaging techniques
especially in the presence of noise and complex interfaces
medium. The algorithm was applied successfully on concrete
bridge structures. The detection of various flaws inside and
beneath post-tensioned beams is demonstrated. To enhance the
manifestation of the considered approach we suggest applying
predictive interpolation techniques to reduce the spatial
sampling interval and using wavelet packet to minimize the
weight of high frequency noise that deteriorate the efficiency of
the nonlinear estimator.
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Figurel A 12-point diffractor model, synthetic data, and comparison between four different imaging techniques.
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Figure 3 L) Concrete slab with partially grouted metal and plastic ducts. M) Synthetic data with SNR = 10dB and R) Image
using wavelet based approach.

Figure 4 L) Large concrete beam with draped and crossed metal and plastic ducts. M) Synthetic data with SNR = 10dB and R)
Image using wavelet based approach.
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ABSTRACT

A general framework for adaptive and non-adaptive space-
time beampattern synthesis using quadratic beampattern
constraints with minimum mean-square error (MMSE) and
linearly constrained minimum variance (LCMYV) beam-
forming is presented. Main beam and sidelobe pattern
control is achieved by imposing a set of inequality con-
straints on the weighted mean-square error between the
adaptive pattern and a desired beampattern over a set of
angle-Doppler regions. An iterative procedure for satisfy-
ing the constraints is developed which can be applied as
post-processing to standard MMSE or LCMV beamform-
ers. The algorithm is used to synthesize a nearly uniform
sidelobe level quiescent pattern for the circular UHF Elec-
tronically Scanned Array (UESA), and to control sidelobe
levels for the same array in an adaptive manner. Perfor-
mance results using data provided by Lincoln Lab show
that under low sample support conditions, sidelobes can
be effectively suppressed while maintaining high signal-
to-interference plus noise ratio, and deep nulls on clutter
and interferers.

1. INTRODUCTION

Space-Time Adaptive Processing (STAP) used in airborne
radar systems combines signals from N antenna array ele-
ments and M pulses to adaptively suppress clutter and jam-
ming in both the space (angle) and time (Doppler frequency)
dimension. Traditionally, STAP systems have used a rotat-
ing linear array configuration, however a fixed circular ring
array is currently under development under the UHF Elec-
tronically Scanned Array (UESA) program sponsored by
the Office of Naval Research (ONR). The array consists of
54 directional antenna elements with suppressed backlobes.
Only 20 of the elements will be used at a time to transmit
and receive [2]. With this configuration, the antenna can be
scanned mechanically in 6.67° increments by choosing the
appropriate 20-element sector, and scanned electronically

This research was supported by ONR Grant #N00014-99-1-0691.
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+3.33° with the chosen sector of elements. The circular
array configuration has the potential to provide continuous
360° availability, however it has some potentially negative
impacts for STAP algorithms [2]. First, the clutter rank is
increased in a manner similar to the increase from misalign-
ment with the velocity vector in linear arrays. Second, the
clutter locus varies with range. This decreases the number
of range gates that can be averaged to reliably estimate the
clutter covariance matrix.

The foundation of most STAP techniques is the Mini-
mum Variance Distortionless Response (MVDR) processor
[1]. The standard MVDR processor weights are designed
to minimize the processor output power subject to a lin-
ear distortionless constraint in the angle-Doppler steering
direction. The same weights can be obtained, to within a
scale factor, using the minimum mean square error (MMSE)
criterion, where the weights are designed to minimize the
mean square error (MSE) between the processor output and
a reference signal [3]. The MVDR/MMSE beamformer can
have unacceptably large sidelobes and mainlobe squinting
due to sensor perturbations, pointing error, and low sam-
ple support. In radar systems, this behavior can lead to in-
creased false alarms from clutter and unexpected interferers.

To mitigate this problem, a general framework was de-
veloped for adaptive and non-adaptive beampattern synthe-
sis for non-linear arrays based on minimum mean-square er-
ror (MMSE) beamforming with quadratic beampattern con-
straints (QPC) [4]. In this technique, main beam and side-
lobe pattern control is achieved by imposing a set of in-
equality constraints on the weighted mean-square error be-
tween the adaptive pattern and a desired beampattern over
a set of angle-Doppler regions. The algorithm uses an it-
erative procedure for satisfying the constraints which can
be applied as post-processing to standard STAP processors.
In this paper, we extend the results to linearly constrained
minimum variance (LCMYV) processing, and present circu-
lar array STAP results with data provided by MIT Lincoln
Lab [5]. .




2. LCMV BEAMFORMING WITH QUADRATIC
PATTERN CONSTRAINTS

Quadratic pattern constraints were first introduced in the
minimum variance, or minimum output power framework.
In [6] and [7], processor output power is minimized sub-
ject quadratic pattern constraints, while in [8] and [9], the
output power is minimized subject to the standard distor-
tionless constraint as well as quadratic pattern constraints.
In [4], we used a MMSE approach in which the MSE be-
tween a reference signal and the array output is minimized
(the standard MMSE beamforming criterion [3]) subject to
a set of quadratic pattern constraints.

An important feature of the MMSE-QPC formulation
in [4] is the specification of multiple quadratic pattern con-
straints. By proper choice of the number of constraints, the
angle-Doppler regions to which they apply, and the desired
beampatterns in those regions, the level of pattern control
can be traded off against algorithmic complexity. At one ex-
treme, low-complexity techniques can be obtained based on
one or two constraints similar to the adaptive pattern control
methods in [6]-[9]. At the other extreme, we can achieve
tight pattern control using many constraints, in a manner
similar to the technique in [10]. Between the two extremes,
an approach using several constraints was shown to achieve
good pattern control and maintain a high SINR with reason-
able complexity.

Furthermore, the MMSE solution allowed development
of an computationally efficient iterative procedure for satis-
fying the constraints which can be applied as post-processing
to the standard MMSE STAP processor. However, there are
cases where linear main beam constraints or sidelobe null
constraints are necessary, and we would like to develop an
iterative QPC technique for LCMV beamforming.

2.1. Direct LCMV Problem Formulation

We assume a STAP model with N antenna elements and
M pulses. Let v(, ¢,w) denote N M x 1 space-time array
response vector to a signal arriving with elevation angle 4,
azimuth angle ¢, and Doppler frequency w. We partition
azimuth angle-Doppler space into r sectors, 1, ... ,§,, as
shown in Figure 1. In this illustration, the elevation angle
space has only one partition and the sectors are cubes, how-
ever more general partitions of azimuth angle, elevation an-
gle, and Doppler space can be used. Let By; (6, 4,w) =
wi;v(6,4,w) be a desired beampattern in the region £,
and wgq,; be the corresponding weight vector. The MSE
between the beampattern generated by the adaptive weight
vector w and the desired beampattern over the region €; is
given by

e§=/ |va(9,¢,w)—wgz-v(e,qﬁ,w)lde. ¢))
Q;
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Figure 1: Partition of Angle-Doppler space
The error can be written compactly as
e = (W - wai) ¥ Qi(w — wa:) @
where
Q= [ vOsunb o O
n.

i

Thus the pattern error is a quadratic function of the adaptive
weight vector.

Adaptive weights are designed according to the standard
LCMYV criterion, while limiting the deviations from the de-
sired pattern using quadratic pattern constraints. Let C be
the N M x d constraint matrix and f be the d x 1 vector of
constraint values. The LCMV-QPC optimization problem is

min  wFRyw st. CHw =f 4)

st. (W —Wd,,')HQ,'(W _Wd,z') <L i=1,...,r

The optimization is straightforward, however the solution is
somewhat complex. For notational convenience, define

Ro = Rn+ Z A Qi )
=1
wo = zr: AiQiwg ;. (6)
i=1
The LCMV-QPC solution is given by
w = R3'C (CHRalc) - (£- CHRGwo)
+R51WQ. @)

This is the multiple constraint extension of the quadrati-
cally constrained MVDR processor developed in [8], [9]. In
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this processor a sum of ‘loading’ matrices Q;, i =1,...,r
are added to the sample covariance matrix, and a weighted
sum of desired weight vector terms Q;wg:,¢ = 1,...,7

appears as well. The loading terms balance the adaptive
pattern with the desired pattern. The relative contribution
of these terms can be adjusted to achieve pattern control
while maintaining high signal-to-interference-plus-noisera-
tio (SINR). There are a set of optimum loading levels A;, ¢ =
1,...,r which satisfy the constraints, however there is no
closed form solution for the loading levels, even when r =
1. It can be shown that the mean-square pattern error de-
creases with increasing J\;, but at the expense of decreased
interference suppression. The loading levels must be cho-
sen judiciously to achieve pattern control while maintaining
high signal-to-interference-plus-noise ratio (SINR).

In [4], an iterative procedure was for computing the opti-
mum loading levels in the quadratically constrained MMSE
processor. It was based on a first order Taylor series approx-
imation of the weight vector for small loading increments.
This technique can be applied in principle to the quadrat-
ically constrained LCMV weights, but the result does not
have the elegance and computational efficiency of the MMSE
solution. The Generalized Sidelobe Canceller (GSC) [11]
form of the LCMV processor provides the key to a better
solution.

2.2. GSC LCMY Problem Formulation

In the GSC, the weights are partitioned into a fixed con-
strained weight vector w., and a reduced dimension adap-
tive weight vector, w,. The relationship to the total weight
vector is

w=w, — Bwy,, )

where B isthe NM x (NM — d) blocking matrix orthog-
onal to C and w, is given by

w.=C(CHC)7'f. ©

Any weight vector with this form satisfies the constraint
CHw = f, therefore the optimization problem becomes

min (WC“‘Bwa)HRx(wc—Bwa) (10)
st (We=Bwo—wai)7Qi(we—Bw,—wa;) < L;
i=1,...,7
Defining

Rz = BYR,B (11)

Qs = BYQB (12)

wg = BHR,w. (13)

ag; = BIQi(w.—way), (i9)
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the constraints can also be written as
waB,,-wa — 2Re (qg’iwa) <m i=1,...,7r (15)
where
i =L — (We = wai) Y Qi(we —wai).  (16)

The solution is given by

r -1 T
Wo = (RB+Z /\iQB,i) (WB +> /\iQB,i) - (17)
i=1

=1

This is similar in form to the MMSE-QPC solution in [4],
and it is now straightforward to derive an iterative update
procedure for this weight vector.

2.3. Iterative Implementation

The algorithm is initialized with the standard GSC weights
wf,o) = R,‘glw 5. At each iteration, the pattern errors are
computed and checked against the constraints. If a con-
straint is exceeded, the loading for that sector is increased
by an incremental factor A%, ie. AP) = AP~ 4 AP,
The the covariance matrix and weights are updated accord-
ing to

R =Rp+> 2 Qs; (18)
i=1

w =wp+ Mgz (19)
=1
-1

wi = (RY) w, 20)

This is a computationally expensive procedure because the
covariance matrix is inverted at each iteration. However,
if the incremental loading levels are small, the update can
be accomplished without re-inverting the matrix. Let s()
denote the covariance matrix inverse at the pth iteration,

-1
-1 _ T
sf) = (rRY) :(Rg 1)+EA§P)QB,,~>
i=1

, -1
= ((Sg'1)> Ty ZAEP)QBJ) . @D
i=1

The GSC steering vector at each iteration can be written as

wi) =wi™ + 3" APgs;. 22)

i=1




Using (21) and (22) in (20), the adaptive weight vector is
given by

W = sPwp

. -1

((52) 7+ Sapans)
i=1

(wg’—l) + Zr: A,(p)qzs,z‘) - (23)

i=1

Expanding this expression in a first order Taylor series ap-

proximation as in [4], w‘(f ) can be updated by:

W) = wg ™ - $g Y AP (@ - as).
i=1

(24)

Similarly, the matrix inverse update is

s§) = gD _glr-1) (Z NG QB,i) s-1_ (25
i=1

One way to achieve fast convergence while ensuring that

the small update assumption is valid is to let A,(p ) be a frac-

tion of the of the current loading value, i.e. Az(p ) = a)\gp )

where o in the range 0.3 to 0.5 seems to work well. This

requires that the initial loading level be non-zero. One pos-

sibility is to initialize all of the loading levels to some small

value, i.e. \\”) = Xg,i =1, ..., r. The algorithm is initial-
ized by

- -1
sy = (RB +0Y QB,i) (26)
izl
w® = Sg) (WB +)\OZQB,1'> . @7
=1

At each iteration, the weights are updated by
1. fori=1,...,r
if w07 Qp iwlp=) - 2te (afwf9) > o
then AP = aA{P) else N
/\EP) — /\1(13—1) i ASP)

2.QF =3 aPqg, (28)
i=1
348 =QPwlr U 1+ 3" APy, (29)
i=1
4w = wir _ gle-1g®) (30)
5.8%) = s~ _sE-DqPsk-1). 3D
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Figure 2: UESA Conventional Spatial Beampattern

Both the MMSE-QPC and LCMV-QPC techniques can
be used for non-adaptive pattern synthesis by letting Ry =
L. They generalize the techniques in [10] and [12] for devel-
oping low sidelobe quiescent patterns for arbitrary arrays,
and can be used for developing a tapered steering vector for
use in the adaptive methods.

3. EXAMPLES

In the MIT Lincoln Lab data set [5], there are N = 20 el-
ements and M = 18 pulses with a 300 Hz pulse repetition
frequency. The UESA spatial beampattern is shown in Fig-
ure 2 and the space-time beampattern is shown in Figure 3.

First, the MMSE-QPC technique was used to synthesize
a-35 dB uniform sidelobe level quiescent pattern steered to
¢ = 0° and w = 0 Hz for a range of 50 km, which cor-
responds to § = —10.5°. Angle-Doppler space was par-
titioned into one elevation angle sector § € (—11°,-29),
11 azimuth angle sectors ¢ € (—12°,12°), £(12°, 30°),
+(30°,60°), £(60°, 100°), (100°, 140°), £(140°, 180°),
and 5 Doppler sectorsw € (—30, 30), (30, 90), (90, 150)
Hz for a total of 1 x 11 x 5 = 55 sectors. The desired pat-
tern was set to zero outside of the mainlobe region, and the
constraint levels were set to -35 dB times the volume of the
sector. No constraint was used in the mainlobe region. The
loading levels were initially set to Ag = 10 dB, and then it-
eratively increased in the sectors where the constraint was
not met using o = 1.5. The algorithm converged in five
iterations. The final -35 dB sidelobe level pattern steered to
¢ =0°w=260Hzis shown in Figure 4.

Next, a scenario with two 30dB interference-to-noise
ratio (INR) jammers at 60° and -20°, in addition to clut-
ter, was considered. An 8 km training window (200 snap-
shots) was used to estimate the covariance matrix. The stan-
dard MMSE/LCMYV processor weights were computed by
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Figure 3: UESA Conventional Space-Time Beampattern

adding -30 dB diagonal loading to allow the covariance ma-
trix to be inverted. The resulting space-time beampattern,
and beampattern cuts are shown in Figures 5 and 8. The
beamformer has put nulls on the clutter ridge and the two
jammers, however the sidelobes are quite high.

The MMSE-QPC adaptive beamformer was used to re-
duce the sidelobes. The quiescent weights derived in the
first example was used as the tapered steering vector. The
initial loading levels were set to Ag = 0.0013, and then it-
eratively increased using @ = 0.8. In six iterations, the
MMSE-QPC is able to reduce the sidelobes below the -35
dB level while maintaining a well behaved main-beam, and
deep clutter and jammer nulls. The final beampaitern is
shown in Figures 6 and 9.

For comparison, the LCMV-QPC procedure was also
applied to this scenario using the same initial loading levels
and increment factor. The final patterns achieved in eight
iterations are shown in Figures 7 and 10. The LCMV pro-
cessor required a few more iterations because it started with
higher sidelobes than the tapered MMSE processor, how-
ever it has a slightly higher SINR.
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ABSTRACT

Space-Time Adaptive Processing (STAP) algorithms that built on
Wiener filtering ideas work well in stationary or quasi-stationary
clutter environments, but may fail to perform satisfactorily when
clutter statistics are appreciably range-dependent. The UESA (UHF
Electronically Steered Array) radar under development by the Navy
employs a circular array, for which clutter statistics exhibit range-
dependence due to elevation dependence. This paper proposes a
novel small sample-support clutter modeling and mitigation algo-
rithm building on parallel factor (PARAFAC) analysis tools. The
proposed PARAFAC-STAP compares favorably to Pulse-Repetition
Staggered STAP (PRSTAP), and provides very encouraging blind
target detection and Doppler estimation results, even at low target-
to-clutter power ratios.

1. INTRODUCTION

The UESA (UHF Electronically Steered Array) circular array un-
der development by the Navy affords 360 degree coverage without
requiring mechanical rotation. A drawback of circular arrays is
that near/mid-range interference statistics are appreciably range-
dependent, due to elevation dependence. This means that the sam-
ple support available for estimating the clutter covariance from
adjacent range bins is limited, which can significantly affect the
performance of linear STAP algorithms [13], [8], [4] that build on
Wiener filtering ideas.

The fully adaptive STAP [1], [13] is optimal (in the sense of
maximizing SINR / prob. of detection for a given false alarm rate)
provided that the target signal parameters (Doppler, azimuth / el-
evation, range) and the interference covariance matrix are known.
In practice however, these parameters need to be estimated, hence
the fully adaptive STAP can be viewed as a performance bound.
In a stationary environment, proper estimation of the interference
covariance matrix requires at least 2J K training samples, J being
the number of antenna elements and K the number of pulses per
dwell [7]. For typical J, K values this translates to anywhere from
several hundred to several thousand samples. The UESA array ex-
hibits clutter range-dependence due to elevation-dependence. More
generally, real-world clutter is often not homogeneous in range,
and assuming stationarity over hundreds or thousands of range
gates can be unrealistic [13]. It is therefore of interest to develop
STAP algorithms capable of performing well with only limited
sample support (e.g., under 100 range gates). This paper devel-
ops such an algorithm based on PARAllel FACtor (PARAFAC)
analysis tools. PARAFAC is a common name for low-rank decom-
position of three- and higher-way arrays. Unlike low-rank matrix
(two-way array) decompositions which are inherently non-unique,
low-rank three-way array decomposition is inherently unique, un-
der mild conditions. This allows us to model clutter in the neigh-
borhood of a certain range gate of interest, and blindly extract
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Doppler, spatial, and range profiles for the clutter patches in the
vicinity of the given range gate. This is achieved by joint least
squares (LS) PARAFAC fitting of the 3-D radar data within a small
batch of range gates. The overall algorithm consists of: (i) LS
beamforming in the look direction (this serves to reduce clutter
rank and improve target-to-clutter ratio); (ii) LS PARAFAC fit-
ting and extraction of clutter Doppler and Spatial components; (iii)
clutter estimation for the range gate of interest by LS projection
of the received range gate data onto the spatial-Doppler span of
the clutter; and (iv) clutter removal and target Doppler estimation.
PARAFAC affords reliable blind target detection down to -40 dB
target-to-clutter ratio, using realistic circular array clutter data. An
adaptive implementation of the proposed PARAFAC-STAP algo-
rithm has also been developed, and it brings complexity down to
PRSTAP-like levels.

The rest of this paper is structured as follows. Section 2 de-
velops the baseband-equivalent clutter model and shows that, un-
der certain assumptions, beamspace clutter can be modeled by
PARAFAC. Section 3 provides brief but necessary background
on PARAFAC and the uniqueness of low-rank decomposition of
three-way arrays. Section 4 develops the proposed PARAFAC-
STAP algorithm, while Section 6 provides simulation results using
a realistic circular array radar dataset?, including comparison with
PRSTAP, one of the leading STAP algorithms. Section 5 develops
a fast adaptive variant of the basic PARAFAC-STAP algorithm.
Conclusions are drawn in Section 7.

2. BASEBAND-EQUIVALENT MODEL FOR
PULSE-COMPRESSED DATA

Consider an airborne radar system that employs M antenna ele-
ments arranged in a Uniform Circular Array (UCA) configuration,
as shown in Figure 1. At any given point in time, a subset of
J < M antenna elements are actually utilized for both transmit
and receive. Active elements are denoted with a triangle, whereas
inactive elements are denoted with a thin line in Figure 1. Let K be
the number of pulses per dwell, f the pulse repetition frequency,
and f, the operating carrier frequency. Following transmit-pulse
matched filtering (pulse compression), the baseband-equivalent re-
ceived data for a point scatterer at a given range gateisa JK x 1
space-time snapshot

z=av($,6,f) +x, )

where
v(8,6, f) = c(f) ®b(4,6) )

is the space (b) - time (c) steering vector, a, @, 8, and f denote
amplitude, azimuth, elevation, and Doppler frequency, ® denotes
the Kronecker product, and x models clutter, jamming, and ther-
mal noise interfering with the radar’s operation. Assuming that the
UCA is composed of identical omni-directional antenna elements

2Courtesy of Dr. M. Zatman, part of the ONR/CSTAP package.




Figure 1: UCA geometry.

spaced uniformly along the circumference, the spatial steering vec-

AP .
or is given by exp(j 22 cos f cos(¢ — B1))
exp(jzf—: cos B cos(¢ —~ B2))

b(s,6) = _ S
exp(j 3= cosécos(tﬁ ~ B1))
pr=p+ 0D Goiay, )

where r is the radius of the UCA, and B is the azimuth of the j-
th active element (§ = 1 is the reference element). The temporal
steering vector is given by

c(f) — [ejZWfT,ej2r2fT,- _“ejzwxfT,JT, )

where T = 1/f, is the pulse repetition period, and f is the
Doppler frequency, which is a function of scatterer azimuth and
elevation parameters, and relative scatterer to airborne platform
velocity. For a stationary point scatterer,

£(9,6,) = 2 sin g cos, ©

where v is the platform’s veloci?y and X, is the carrier wavelength.
The interference term x in (1) consists of clutter, jamming and
thermal noise
X = Xe + X5 + Xq, )
which are usually assumed to be uncorrelated with one another
{13]. In the absence of jamming, clutter is the dominant inter-
ference term in (7). Under certain conditions [13], clutter can be
modeled as a sum of F components

F
X = Zakv(¢k,9k,f(¢k,9k,vk)) (®)

k=1

F
= > axc(f(gr, 6k, v)) ® blgy, bi), ©
k=1
where v is used to denote the relative velocity vector for the k-th
component. Let us re-arrange (9), using that® c® b = vec(beT):

X = vecy y(%c) (10)
ai 0 0 c::l[v
0 a2 0 =
= |bibs---bp 2 : . |an
. 0 ..' O N
0 -+ 0 ap C;
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or X = B(¢,0)diag(a)C" (4,6, ),

where bi := b(dk, k), e = c(f(¢x,0%,V)), ¢, 6, v, and a
are F'x 1 vectors of azimuth, elevation, velocity, and amplitude pa-
rameters for the F' clutter components, B(¢, 8) isa J x F matrix
that holds all spatial steering vectors, and C(¢,8,v)isa K x F
matrix that holds the respective Doppler vectors. For a total of T
range gates, the data can be modeled as (dropping the subscript ¢
for brevity)

Xi = B(¢;,6;)diag(a:)C"(6;,6i,vi), i=1,---,1.

Notice that B and C depend on range through the azimuth, ele-
vation, and velocity parameter vectors®. For hi gh range-resolution
radar (like the UESA system that supports range resolution down
to approximately 40 meters) it is reasonable to assume that B and
C remain approximately invariant over a small number of con-
tiguous range gates, and only the clutter component proportions
a; change with range. That is, the space-Doppler clutter locus
remains approxXimately invariant for a small (e.g., in the order of
20-100) number of range gates. This is well-motivated for spa-
tially beamformed data, which only exhibit a few spatio-temporal
modes, determined primarily by the spatial mainlobe/sidelobes,
with some residual Doppler variation due to clutter scintillation. It
is also well-motivated for discrete coherent scatterers, whose phys-
ical dimensions span a proportional number of range gates. With
this assumption, the data model for I range gates can be written as

X;=BD;(A)CT, i=1,---,1, (12)
where A is an I x F matrix that holds the component profiles for
the 7 ranges, and D;(A) is a diagonal matrix holding the i-th row
of A on its diagonal. Equation (12) can be viewed as a rank-F de-
composition of the three-way data array constructed by laying out
the X;’s parallel to each other along range. Interestingly, low-rank
decomposition of three-way arrays is unique - thatis, A, B, and C
can be essentially uniquely determined from the X;’s, under a rel-
atively mild rank-like condition. PARAllel FACtor (PARAFAC)
analysis is a common name for low-rank decomposition of such
three-way arrays, and it is reviewed next.

3. PARAFAC

The pioneering work of Cattell(published in Psychometrika in '44)
formed the basis for the development of PARAFAC by R.A. Harsh-
man [3] in 1970. Although PARAFAC is widely adopted as a
powerful analysis tool in Chemometrics and Psychometrics, it was
only recently introduced to the signal processing and communica-
tions community by Sidiropoulos ez al [11, 12, 10].

Consider an I x J X K three-way array X with typical element
%1,5,k, and the F-component trilinear decomposition:

F

Tk = Zai,fb-,fck,f. (13)
f=1
In (13), X is expressed as a sum of F rank-one three-way
factors; a schematic of such decomposition is given in Figure 2.
Analogous to the definition of matrix (two-way array) rank, the
rank of three-way array X is defined as the minimum number of
rank-one (three-way) components needed to decompose X.

8vec(-) stacks the columns of its matrix argument in a tall vector; simi-
larly vecllk (-) performs the inverse operation, producinga J X K matrix
out of its vector argument, which is assumed to be JK x 1.

41t is implicitly assumed here that F is appropriate to model clutter

throughout the I range gates of interest. This can be achieved by picking
F :=max(F},..., Fr), with obvious notation.




<

F

Figure 2: PARAFAC model

Let A be an I X F matrix with typical element a; 5, B be a
J x F matrix with typical element b; ¢, C be a K X F' matrix with
typical element ¢, ¢, and D; (A) denote a diagonal matrix contain-
ing the i-th row of A.. Define J x K matrices X;, I X K matrices
Y;, and I x J matrices Z; with corresponding typical elements
Xi(4, k) = Y;(3, k) := Zi(%,J) := zi,j,k. Then Equation (13)
can be written in three equivalent ways in terms of systems of ma-
trix equations, corresponding to three different ways of “slicing”
the data cube in Figure 2 along a given axis:

X; = BD;(A)CT,i=1,2,---,1, (14)
Y; = AD;(B)CT,j =1,2,---,/J, (15)
Zy = ADi(C)BT,k=1,2,--- K. (16)

In addition to the sliced model representations above, several two-
way representations (corresponding to different ways of unfolding
the three-way structure X into block-row “matricized” form) are
possible. For example,

Xi=1 BDI(A)
Xi=2 BD2(A)

XU | T | T eToa @ B)CT, (1)
Xi:I BDI(A)

where the superscript “7*X) means that the matrix is of size
JI x K, and the j-index (J goes first in the product JI) runs
faster than the i-index along its columns, and the symbol ©® stands
for the Khatri-Rao (column-wise Kronecker) product.

3.1. k-rank

The concept of k-rank [3] is instrumental for PARAFAC.
Definition 1 Consider a matrix B € C'*F. Ifrank(B) = r,
then B contains a collection of r linearly independent columns.
Moreover, if every £ < F columns of B are linearly indepen-
dent, but either there exists a collection of £ + 1 linearly depen-
dent columns or £ = F, then B has k-rank kg = {. Note that
ks < rank(B), VB.

3.2. Identifiability

A distinguishing feature of the trilinear model is its uniqueness.
Under mild conditions and unlike the unconstrained bilinear model
(Z = ABT), the trilinear model is essentially unique - that is
A, B, C are identifiable without unitary matrix ambiguities.

Theorem 1 (R-[5]; C-[12]) Given X; = BD;(A)C7,
i=1,2--,I, AcC*F BeC'*F ceCK**, i
ka +ks+kc > 2(F+1) (18)

then: A, B, and C are unique up to permutation and (complex)
scaling of columns.
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3.3. Trilinear Alternating Least Squares Regression

The principle of Alternating Least Squares (ALS) can be used to
fit the trilinear model in (13) on the basis of noisy observations
Z;,5,k- The basic idea behind ALS is simple: In each step, update
one matrix, using least squares (LS) conditioned on previously ob-
tained estimates for the remaining matrices; proceed to update the
other matrices; repeat until convergence. A basic trilinear ALS
(TALS) algorithm is outlined in [12]. The trilinear ALS method is
appealing primarily because it is guaranteed to converge monoton-
ically, but also because it is conceptually simple (no parameters to
tune, each step solves a standard LS problem) and provides good
performance [9].

Least squares fitting of (17) (and ML parameter estimation,
when the noise is modeled as i.i.d. Gaussian and all other parame-
ters are treated as deterministic unknowns) amounts to:

X, BD;(A)
min : - : cT , (19)
ABC - .

X BD;(A) P

where X;, i = 1,-- -, I are the noisy slabs, and || - ||» stands for

the Frobenious norm. It follows that the conditional least squares

update for C is:

8o, &) 1" [ X

cT = : . : , (20)
BD;(A) X;

where ()1 stands for pseudo-inverse, and A, B denote previously

obtained estimates of A and B. One may now resort to the com-

plete symmetry of the trilinear model (cf. Equation (13)) and data

reshaping (cf. Equations (14), (15), (16)) to figure out correspond-
ing conditional LS updates for A and B.

4. PROPOSED ALGORITHM: PARAFAC-STAP

The proposed PARAFAC-STAP algorithm consists of several steps,
which are discussed next. The basic idea is to isolate a small batch
of contiguous range gates around a given “target” range gate of
interest, exctude the target range gate, and fit a rank-F' PARAFAC
model to the remaining data in the batch. This will recover an esti-
mate of the clutter’s spatio-temporal steering vectors in the neigh-
borhood of the target range gate. Using these vectors, the clutter’s
contribution in the range gate of interest can be estimated in a least
squares sense, and subsequently removed from the data. What re-
mains is an estimate of the rank-1 target contribution if a target is
present.

The method capitalizes on the following observation: if the
target is away from the clutter ridge, then its (rank-1) contribution
cannot be spanned by clutter components, and this provides means
for separation even at very low target-to-clutter power ratios.

4.1. Step one: Least Squares Beamforming
The first step in the overall algorithm is to compute a least squares
beamformer for a desired look direction, and then beamform the
received data. This serves a two-fold purpose:

1. Clutter rank (F') is reduced by beamforming, which ensures
that a low-rank PARAFAC model is appropriate; and

2. The target-to-clutter power ratio is improved, by filtering
out clutter from other than the look direction. This is espe-
cially important for low target-to-clutter ratios (in the neigh-
borhood of -30 to -40 dB is not unusual).




The least squares beamformer per se can be computed off-line, and
the weights stored for later retrieval. The formulation is as follows.
Given a UCA steering vector svi,o for a particular look direction
of interest, and a set of 2 additional steering vectors corresponding
to a quantization of the (azimuth,elevation) horizon, finda J x J
beamformer to

n%‘i,nllsdasired - Wsmeasured”%‘a (21)

where
Sdesir:d = < SViook ) 0 s 0 N (22)

and

Smeasured = [( SViook ) ( sV1 ) ( SVp )] . (23)

This 1s a standard least squares problem, whose solution is (n > J)

W= Sde*"i'“’vdsineasured' (24)

Applying the beamforming transformation to each range gate of
X, we obtain

X® =WX;, i=1,2,---,1, (25)

from which we construct the beamformed three-way array X (®).

4.2. Step two: PARAFAC fitting

The goal of this step is to extract a local PARAFAC model for
clutter in the vicinity of a target range gate of interest. Towards
this end, we select a neighborhood of length I range gates and fit
an F-component PARAFAC model to the beamspace data around
but excluding the range gate of interest. This is illustrated in Figure
3. The selection of appropriate I and F is an important step. Our
experiments show that the selection of 7 is not crucial - any choice
between e.g., 20 and 40 provides good results. The choice of F
is far more complicated - F' is the essential rank of the three-way
data array, and rank determination is a difficult problem. In our
experiments, we selected F' using split-half analysis, then tested
the results for consistency across range space. We will revisit this
issue in the simulations section.

Let X, be the selected data, excluding the range gate of inter-
est. Invoke the comfac fast least squares PARAFAC fitting algo-
rithm in [2}

[A,B, C] = comfac(X,, I — 1,J,K], F), (26)

to recover joint least squares estimates of the clutter range profiles
A : ((I -—1) x F), spatial profiles B : J x F, and Doppler
profiles C: K x F.

K Pulses :

1
i

J Elements

Range v2-1 12

Figure 3: PARAFAC-STAP Illustration
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4.3. Step three: Least Squares Interpolation

The goal of this step is to estimate the clutter contribution for the
range gate of interest from the local clutter parameters extracted in
the previous step. The clutter range profiles (A) extracted in step
two are typically very rapidly varying, and are therefore useless for
interpolation purposes. However, the spatial (B) and Doppler (®))
profiles remain approximately invariant over a small number of
range gates, and they can be used to estimate clutter in the missing
slice. This task can be formulated as a least squares problem

min [|X, — BDC™|[%.

where X is the data in the range gate of interest. The solution of
this problem is given by:

dis = (C @ B)'vec(X,),
D.s = diag(drs). @7)

4.4. Step four: Target Doppler Spectrum Estimation

In this final step, the estimated clutter contribution in the range
gate of interest is removed from the range gate data to reveal the
target’s contribution, if any. Accordingly, if a target is present

X: =X, -~ BD;sC7, (28)

provides an estimate of its rank-1 contribution. The unknown
pure target contribution is of the form b(¢:,6:)cT (). Given
X: ~ b(:,6:)cT(f:), c(f:) can be estimated in a variety of
ways. A simple way to do it in MATLAB is to take the right singu-
lar vector corresponding to the strongest singular value of it, and
e.g., compute its periodogram. This periodogram can be used to
determine if a target is present (if it is, then the periodogram should
be approximately unimodal) and estimate its Doppler. More so-
phisticated parametric techniques can also be utilized.

5. ADAPTIVE TRILINEAR ALTERNATING LEAST
SQUARES (A-TALS)

The result in (27) is useful not only in deriving the LS estimate of
the clutter component weights in the range gate of interest, but also
in developing fast least squares algorithms for fitting the general
PARAFAC model. This is particularly important in our present
context, because the processing in steps one to four above has to
be repeated for every single range gate of interest - which quickly
builds up to a formidable task.

The basic idea behind A-TALS is simple. Once processing for
a certain range gate is complete, the entire I x J x K cube is
shifted to the right by a single range gate. One can then use 27 to
LS-predict the component weights for the next data slice in line.

In MATLAB notation, using drsinterp to denote the opti-
mal weights previously computed for the interpolated slice, and
dLs predict the weights for the new slice

Anew(1:(I/2)—1,) = A2:(1/2),)), (29)

Ane‘w((I/z)y :) = afs,intcrp) (30)
Anew((I/2) +1:1-2,2) = A((I/2)y+2:1-1,2), (€20

Anew(-[ - 1, :) = afs,predict' (32)

Anew, along with the existing estimates for B and C is then used
to initialize the LS fitting procedure for the shifted data. The re-
sult is an algorithm that achieves the same results as the batch al-
gorithm in [2], but is an order of magnitude faster: typically 2-3
iterations are sufficient for convergence, due to smooth variation
in B, C.




6. SIMULATION RESULTS

We conducted a series of simulation experiments (we can only
show some of them due to limited space) using the circular STAP
data package developed for the UESA radar by Dr. M. Zatman,
and distributed to ONR/CSTAP participants. The data package
contains simulated clutter data for typical UESA system param-
eters. Throughout, the following system parameters are in effect:
J = 20 active antenna elements, K = 18 pulses, carrier frequency
f»=435 MHz, platform velocity v=100 m/s, pulse repetition fre-
quency f»=300 Hz.

The parameter I determines the length of the neighborhood
chosen for clutter model fitting. I should not be too small, as this
may violate the required identifiability conditions. On the other
hand, I cannot be too big, for otherwise the invariance of B and C
will no longer be valid, due to UCA range dependence. We found
through experimentation that the choice of I is not critical, with
values between 20 and 40 providing similar results. We therefore
chose I = 32. Performance is more sensitive to the choice of F.
As previously mentioned, F is the essential rank of the three-way
data array. For our simulations, we selected F' = 9 using split-half
analysis, and also experimented with various values of F. The
results show that F' should be roughly between 8 and 12 for best
detection performance. Rank determination is a difficult problem,
and there is more work to be done in this direction.

In our first series of experiments, we injected a target at a cer-
tain range gate, and applied the proposed PARAFAC-STAP algo-
rithm to the mixed clutter/target data. Figures 4 depict the target
Doppler spectrum (top) and Doppler spectra extracted from the
target slice using SVD before clutter mitigation (middle) and af-
ter PARAFAC-STAP clutter mitigation with target to clutter power

2
ratio TCR := 10log;o jrk set to -40 dB. Notice how well
cltg

PARAFAC-STAP performs, even at this low TCR (all 1-D plots
normalized to [0,1]-range). Another example (target Doppler closer
to clutter ridge) is given in Figure 5.

In our second series of experiments, we constructed a syn-
thetic target Doppler-range template consisting of three identical
targets injected to the test range gates at near/mid-range. Figures
6 and 7 show before and after PARAFAC-STAP clutter mitiga-
tion results for mid-range, TCR=-40 dB. Observe that the inserted
targets can be easily detected after PARAFAC-STAP clutter miti-
gation. As a line of comparison, Figure 8 shows PRSTAP results
for the same dataset, using about 20 times more training samples
than PARAFAC-STAP.

Figure 9 gives the CPU time comparison between PARAFAC-
STAP (batch version) and its adaptive version developed in Section
5. Both algorithms provide the same fit, but the adaptive one is an
order of magnitude faster.

7. CONCLUSIONS

Motivated by the need to develop novel STAP algorithms for the
UESA radar, we proposed a small sample-support clutter modeling
and mitigation algorithm that circumvents the clutter covariance
estimation step common to all Wiener-based STAP algorithms.
The proposed STAP algorithm builds on PARAFAC analysis tools,
and reduces the required sample support from several hundreds to
a few dozen samples. PARAFAC-STAP compares favorably to
PRSTAP, and can provide reliable detection results even at low
TCR, without assuming knowledge of the target’s Doppler. We
also developed an adaptive version of PARAFAC-STAP which does
not compromise performance while bringing overall complexity

53

down to PRSTAP-like levels. PARAFAC-STAP can be a use-
ful tool in other nonstationary environments, beyond the specific
UESA circular array application that motivated our work.
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After clutter mitigation, TCR=~40 dB, in log scale
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Figure 7: TCR=-40 dB, mid-range, after clutter mitigation
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Figure 8: TCR=-40 dB mid-range, PRSTAP algorithm
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Abstract

We describe a novel multi-layer (“domain factorisation”)
adaptive beamforming method, for element-digitised array
radar (EDAR). This enables adaptive beamforming weights
for an array of many hundreds or thousands of elements to
be calculated with vrealistic sample support and
computational workload. Range-dependent gain adaption
(RDGA) coupled with adaptive weighting of each element of
the array permits much more effective cancellation of
clutter and jamming than sub-array based space-time
adaptive processing. Simulations of airborne intercept (Al)
radar demonstrate the power of this approach for detection
of small targets against severe clutter and jamming.

If a strong target echo is present, it is bound to contribute to
one or more of the range-gated adaptive weight
calculations, and there is a danger of target cancellation.
We show how this may be dealt with by excising target line
spectral contributions from the data used for weight
calculation.

1. Introduction

The performance and availability of digital technology -
from analogue-to-digital converters (ADCs) to digital
signal processing - continue to increase, whilst costs
plummet. There has been similar progress in the technology
for producing microwave integrated circuits.

As a result, it is now realistic to consider element-level
digitisation for large phased array radars, as opposed to the
current state-of-the-art, which is based on sub-array
digitisation. Benefits include

»  improved ability to compensate for mismatches in
analogue components (or the ability to use cheaper, less
well-matched analogue components);

« the ability to form multiple simultaneous low-
sidelobe receive-beams, accelerating surveillance; and

» new opportunities for the design of the adaptive
beamforming system, offering improved cancellation of
unwanted signals.
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The challenge is to exploit the additional degrees of
freedom without demanding unrealistic numbers of data
samples, and without requiring unrealistically high levels of
computation for calculation of the beamforming weights.

In this paper, we concentrate on adaptive beamforming in a
fully-digitised forward-looking airborne phased array, such
as might be fitted in a fighter aircraft. Section 2 reviews the
basic processing scheme [1], and suggests methods for
preventing cancellation of strong target echoes. Section 3
provides simulation results to illustrate typical
performance. We also illustrate the effect of calibration
errors on clutter cancellation.

2. Element Digitised Array Radar
2.1 Cancellation of Clutter From Airborne Radar

In simple terms, detection of targets by an airborne radar
may be limited by (a) thermal noise; (b) jamming or other
interference; (c) clutter. For a particular power-aperture
product, thermal noise sets the ultimate limit. In phased
arrays, fixed taper weighting can keep sidelobe gains low,
reducing sensitivity to sidelobe jamming and clutter.
However, at low altitude, clutter breaks through and masks
targets. Phased arrays can be designed to adapt their gain to
the environment. To date, in large arrays, individual
elements have been grouped into (typically 16) sub-arrays,
the outputs of which are weighted adaptively and then
summed. Due to the small number of degrees of freedom, it
is possible to suppress only a limited number of point-
source jammers. Spatial adaption has been largely ignored
for cancellation of distributed clutter.

Two approaches can be taken to increase the number of
degrees of freedom. Firstly, a tapped delay line can be used
on each sub-array output to create a Doppler-frequency
dependent weight vector. This leads to space-time adaptive
processing (STAP) [2], which is very well suited to
removing the clutter seen from a sideways-looking airborne
radar. A second method is to increase the number of sub-
arrays. This can be increased until the array is completely
digitised. However, if the usual sample-matrix inversion
adaptive algorithm is similarly extended, element digitised




adaptive beamforming becomes impractical for large arrays
because too many data samples are required to estimate the
covariance matrix, and the number of digital operations to
invert the covariance matrix becomes too large. Below, we
describe a processing architecture that allows us to calculate
element-level weights without these problems.

2.2 Range Dependent Gain Adaption (RDGA)

Within a single range gate, clutter observed by the radar
subtends a limited solid angle. Range dependent gain
adaption (RDGA) involves calculating an adapted
beamforming weight vector for each range gate. Thus, it is
not necessary to maintain ultra-low sidelobes for all angles
of amrival - only for angles corresponding to the clutter
within the range gate of interest. An »n x m matrix of data is
used to calculate the weight vector, where # is the number
of antenna elements and m is the number of pulses. At high
PRF, range ambiguous clutter returns are received. This is
indicated in Fig. 1, where the radar is at an altitude 4 above
a flat earth. A target is at a distance of R,= n,R, + d,, where

n, is an integer, R, is the range ambiguity given by
R, = cT/2, T is the pulse repetition interval (PRI) and

¢ =3x10° m/s. After an initial period of n, pulses has
elapsed, the target return lies in all m samples. Each sample
contains clutter from rings on the ground located between
distances of R,+d,—a to R,+d,+a, 2R,+d,—a to

2R,*d,+a, .., pR,+d-a to pR,+d,+a, where

a = ¢t/2 and 7 is the pulse length.

To cancel the clutter spatially, broad gain minima must be
formed over the clutter bands. Sidelobes may increase in
other directions. This reduces array efficiency, but does not
increase sensitivity to other interference since signals
corresponding to intermediate ranges have been gated out.
Although we have described a high pulse-repetition-
frequency (HPRF) mode of operation, the method can be
extended easily for low and medium PRF. (Section 3
includes results from a medium PRF simulation.)

2.3 Domain Factorisation

In this paper, we consider a planar array of n = 1387
elements, whose locations are shown in the bottom right of
Fig. 2. We assume that all elements have been matched,

domain 1 (n=19) domain 2 (n=49)
04 0.4
0.2 0.2
ot 0 0
-0.2 -0.2
-04 -04
-04 -0.2 0 0.2 0.4 -04 -0.2 0 0.2 0.4

domain 3 (n=55) d1°d2*d3 (n=1387)

04 04
02 02
0 0
-02 -02
-04 ~0.4
~04 =02 0 02 04 -04 -02 0 02 04

Figure 2. Three-layer domain factorisation of a 1387
element X-band array. Axes show dimensions in
metres.

using digital correction. Element-level weights are
calculated by breaking down the processing into smaller
stages, or domains, as illustrated in Fig. 2. The first domain,
shown in the top left of Fig. 2, consists of #;=19 elements
taken around the array centre. The second domain, of 7,=49
points, is shown in the top right of Fig. 2. The third domain,
of n3=55 points (in randomised positions, to minimise
grating effects [1]) is shown at the bottom left. In domain q,

a weight vector w'? of dimension g1 Is calculated

Centre of array

i /

Target distance, R, = nR, + d,

Altitude, A

Ground plane 1L___

R,+d-a R,+d, R,+d,+a

2R+dra 2R, +d, 2R +dq+a

3R,*d-a 3R,+d, 3R +d+a

Figure 1. Using a HPRF waveform, clutter is received from multiple ambiguous ranges. Adaption to the
clutter is achieved by calculating a unique weight vector for this range gate.
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adaptively from an n,xm matrix of signals x@ , Where m

q
is the number of time samples.
Define the data at a single domain element to be the 1 xm

vector x(r) where r is the position vector of the element.

The n;xm matrix XY which is used to calculate the
weights in domain 1 is given by

XV = [ 0] M

2 rz1

(1)

where T denotes the matrix transpose. x; ° is the data

time-series from the i
(1) 1)

element in domain 1, given by

x?l) = x(r; '), where r;’ is the position vector of the it
element.
Having obtained the domain 1 weight vector

T
wl) = [w(ll) ng) Wﬁ‘j , shifted versions of domain 1

then form n, overlapping sub-arrays, centred about the
domain 2 points. The inputs to domain 2 are then

"y

2 1 1 2
P = 3 wx"+ ), @)
i=1
where zj(.z) is the position vector of the j’h point in domain 2
and j=1,2 ... ny. The n, x m matrix of domain 2 data is
Do @ @ <2>
XB = [0 o) ©)

T
The weight vector w® = [w(lz) W;Z) wf,z)] is then
2

calculated by adapting to the data in X? The input signals
to domain 3 are

3 N (@ 1 2 3

xi) zzw()() Z§)+rj(')+r§c))= %)

i=1j=1
where zf) is the position vector of the K point in domain
3,and k&=1,2 ... n3. The ny x m data matrix for domain 3 is
n_ [ T

X = L0 0] )

From X, a weight vector w'> = [w(l” w(23) ff)} is
3

calculated, and the 1 x m output from the array is
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y= z Z 2 (}) (2) (3)x(r(l)+r(2) (3)). (6)

i=lj=1k=1

The weighting in equation (6) is a convolution of the
weights for each domain, and the array beam pattern is the
product of the patterns of each domain.

2.4 Weight Computation

Beamforming weights can be calculated using diagonally-
loaded Sample Matrix Inversion. The loaded covariance
matrix in domain g is

qu) 1 X(q)X(q)H q)I %)

where H denotes the complex conjugate transpose, YD isa
loading factor, and I is the identity matrix. The n,x1

weight vector is then calculated using [3]

R(q)-lc(q)

w(Q) — (8)
(q) R(q) 1 (9)

¢ is the look-direction vector of the form
@ W]’
¥ = [ ik ? ik T ";:} 9
(4 e ... €

where k, = knj and n; isa unit vector in the look direction,

and k = 2n/A, where A is the wavelength. Diagonal
loading reduces weight jitter in each domain, desensitises
the weights to insignificant signals and reduces the
influence of signals incident near to the look-direction.

In the HPRF results presented in section 3, y(q) is chosen to
be three times the magnitude of the median eigenvalue of

the covariance matrix at the qth stage of domain
factorisation. This value is typically higher than might be
used purely for weight jitter control. We have made no
attempt to optimise this, merely choosing a value which
works well in a wide range of simulated conditions.

Main beam clutter can cause severe distortion of the adapted
beams, if it is allowed to influence the weight calculation.
However, it is easily dealt with by temporal pre-filtering of
the data used for weight calculation at each domain level.
The weights are then applied to the unfiltered data.

Remembering that the main beam of the first and second
domains may be very broad, it is important to ensure that
jamming entering these beams is not cancelled. A variety of
simple modifications are possible, to ensure this. This issue
1s discussed in reference [4].




2.5 Preventing cancellation of strong targets

It is possible for an adaptive beamformer to cancel or
suppress a strong target echo in the same way as for a
main-beam jammer. Maintaining adaption to jamming,
whilst inhibiting suppression of target-like signals could be
approached in a variety of ways. For example, (a) range
averaging the covariance to dilute the effect of a target in
one range bin relative to jamming and clutter that appears in
many range bins; (b) range exclusion - a variant of range-
averaging, in which adaption for a given range bin is based
on data from adjacent bins; (c) spatial filtering, to attempt to
remove the target signal; (d) Doppler filtered adaption, in
which the intent is to remove contributions to the signal
covariance that are attributable to sources with narrow
Doppler spectra (i.e. target-like signals).

Here we have examined the Doppler filtering approach.
Two implementations are possible. These are briefly
described as follows.

(1) In many cases - particularly in the absence of main beam
jamming - the strong target signal will be visible as a line in
the Doppler spectrum of the third domain (or even from the
second domain). It will be partially cancelled by the
adaptive beamformer, whilst weaker signals may be
invisible thanks to the loss of overall beamformer gain.
Under such conditions, we can modify the Doppler filter
that is used to remove main-beam clutter from the data used
for adaption. The modified filter would remove the stronger
target signal in addition to the clutter, as shown in section 3.

(i) In the presence of main beam jamming, it may be
impossible to estimate the Doppler frequency of the strong
target, as described above. In such cases, an indirect
solution is possible. The signals output from the
penultimate domain can be transformed into Doppler space,
and a number of covariance matrices formed, each with
selected Doppler lines removed. The Doppler frequency of
a strong target-like signal will be indicated by a
disproportionate difference between the eigenvalue spectra
of the “correct” and “incorrect” covariance matrices. This is
because all its energy will be concentrated in a single
Doppler bin - in contrast to that of the jammer, which will
fall approximately equally into all bins.

3. Simulation results

We have simulated an Al radar in level flight at 300ms™! at
an altitude of 1000m. A high PRF (150kHz, providing

unambiguous Doppler up to 1100ms™!) means that more
clutter enters each range bin, stressing the spatial adaption
to a greater degree than might be the case for a lower PRF.
There are 256 pulses in the pulse-train (a low number for
HPRF). We have simulated a peak transmitter power of 3W
per element, with no aperture shading, and a randomly
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chosen 10% of elements assumed to have failed (not
transmitting). The element failure has the effect of raising
transmit sidelobes to around -40dB.

Clutter is simulated using a mixture of ‘equal brightness’
reflections (e.g. grass) and clutter discretes disposed at
random. We include 8 range-ambiguous clutter bands. The
first 2 or 3 bands dominate, unless main-beam clutter is
strong. Three powerful sidelobe noise jammers and two
targets complete the picture. The target ranges and cross-

sections are 40km and 1m?, respectively. The targets are
close to, but not exactly on the look-direction. One is
approaching (Doppler outside the clutter spectrum) and the
other one is being pursued (Doppler inside the clutter).

Fig. 3 shows the adapted gain pattern for the whole array, in
u-v coordinates, for this scenario. Jammer positions are

Array gain (dB)

0.5

sin(elev)
o

1
o
o

-1 ~-0.5 0 0.5 1
cos(elev) x sin(az)

Figure 3. EDAR gain pattern, in u-v coordinates,
following adaption to sidelobe clutter and jamming.

marked ‘X’ and the positions of the first four clutter rings are
indicated with pairs of horizontal lines. We can see that very
low gain is directed towards both clutter and jamming. The
overall array efficiency is -2.5dB relative to a uniformly
shaded beamformer. Fig. 4a shows the Doppler spectrum of
the data from a single element. The background level is due
to the sidelobe jamming, and the clutter Doppler lies
approximately between 0 and 20kHz. Fig. 4b shows the
Doppler spectrum of the beamformed output, showing the
two targets well above the residual clutter, jamming and
thermal noise.

In Fig. 5a, we show the effect of increasing the power
reflected from the approaching target by 30dB. The strong
target has no effect at the lower domain levels, because the
process used to prevent premature cancellation of
main-beam jamming [4] suppresses any influence of signals
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Figure 4. Doppler spectra in the presence of 3 sidelobe
jammers and ground clutter (a) at the output of a
single array element, (b) at the output of the adaptive
EDAR processing. The two vertical ticks above the
main peaks in (b) indicate the true target Doppler
frequencies. Main beam clutter has been removed
using a fixed Doppler filter, following beamforming.

incident near the look-direction. However, at the top
domain level, the gain adaption has responded to the strong
target and both targets are severely attenuated. The array
directivity has degraded to -21dB, though the precise loss
will depend on the processing parameters.
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Figure 5. Doppler spectra in the presence of 3 sidelobe
jammers and ground clutter, with strength of fast
target increased by 30dB. (a) Without extended
Doppler filter (b) With extended Doppler filter.

However, the strong target is clearly visible (indeed, it is
visible in the output from domain 2) and therefore its
Doppler frequency can be estimated. Using a modified
Doppler filter (i.e. with a notch at the target Doppler
frequency, as shown in Fig. 6) recovers the directivity. Both
targets are then visible, as shown in Fig. 5b.

Finally, we have simulated an Al radar in level flight at

300ms™! at an altitude of 2000 feet. A medium PRF
waveform is used (14.285kHz, with a bandwidth of 4MHz).
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Figure 6. Gain of modified clutter filter. The notch near
19kHz removes main beam clutter. The notch at 36kHz
removes the strong target.

There are 128 pulses, and (to represent the effect of pulse
compression) groups of 35 adjacent range-gates have been
averaged into the covariance matrix. We have simulated a
peak transmitter power of 10W per element, with 12.5%
duty ratio. There is no aperture shading on transmit, but a
randomly chosen 1% of elements do not transmit. (This
raises the transmit sidelobes to a realistic level.)

In this simulation the clutter is modelled using
(N 2, 2
¢ = ysin@+v,,exp(-(90-6)"/y, ) (10)

where 6° is the clutter cross-section, @ is the grazing angle,

y=102, v, =10, and y, = 10°. The first term in

equation (10) is a constant gamma model for the clutter, and
the second term simulates the altitude line return.

Fig. 7 shows range-Doppler maps for beamformers pointed
at 30 degrees in azimuth. These are (a) a fixed beamformer,
(b) 3-tap pre-Doppler STAP processing of data from a
64-sub-arrayed antenna, and (c) EDAR/RDGA processing,
as previously described. In each case, we have simulated
random amplitude and phase errors (0.2dB and 2.5 degrees
RMS, respectively). There are 25 targets at different ranges
and Dopplers (most of which are visible, on a regular grid)
and sidelobe clutter. Target strengths are equivalent to a
1m? object at a range of 50km. The plots are scaled to give
constant thermal noise level in each range-Doppler cell,
equal to kTB, where k is Boltzmann’s constant, 7 = 290K
and B is the bandwidth.

In the absence of errors [4], EDAR domain-factored RDGA
processing removes almost all of the sidelobe clutter. In the
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Figure 7. Range-Doppler maps for (a) fixed
beamformer, (b) 3-tap pre-Doppler STAP on 64-sub-
array antenna, (¢) EDAR/RDGA. Calibration errors of
0.2dB and 2.5 degrees rms have been simulated.
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presence of errors (Fig. 7c) there is increased breakthrough
of the strongest clutter returns (although, in practice, the
closest range returns would be eclipsed). It is interesting to
note that, in some cases, the recovered signal-to-noise ratios
from the fixed beamformer (Fig. 7a) are higher than from
the STAP beamformer (Fig. 7b). RDGA on the EDAR
beamformer gives the best performance, with a valuable
increase in the area of the useable range-Doppler detection
space. Performance may be improved still further by (i) a
simplified form of STAP processing on output beams
formed by EDAR/RDGA, to enhance detection of slow
targets; (ii) reducing the number of range-gates over which
the covariance matrix is averaged; (iii) increasing the
number of elements in domain 3; (iv) potentially more
accurate calibration of an element-digitised array.

4. Conclusions

Using domain factorisation, adaptive processing of a large
element-digitised phased array can be achieved with
realistic sample support. Range-dependent gain adaption
enables effective spatial adaption for cancellation of
distributed clutter. Strong target returns can be preserved by
intelligent Doppler filtering prior to the final level of
adaption. Random calibration errors can cause some
breakthrough of altitude line clutter, although the method is
no more sensitive than other techniques. Future work
should examine the potential for reducing errors by
element-level calibration.
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ABSTRACT

Research in the area of signal detection in the presence of un-
known interference has resulted in a number of adaptive detec-
tion algorithms. Examples of such algorithms include the Adap-
tive Matched Filter (AMF), the Generalized Likelihood Ratio Test
(GLRT), and the Adaptive Coherence Estimator (ACE). Each of
these algorithms results in a tradeoff between detection perfor-
mance for matched signals and rejection performance for mismatch
signals. For example, AMF has better matched signal detection
characteristics than ACE, but ACE has better mismatched signal
rejection capabilities. This paper introduces a new detection algo-
rithm which we call Adaptive Beamformer Orthogonal Rejection
Test - ABORT. Our test decides if an observation contains a mul-
tidimensional signal belonging to one subspace or if it contains
a multidimensional signal belonging to an orthogonal subspace
when unknown complex Gaussian noise is present. In our analysis
we use a statistical hypothesis framework to develop a generalized
likelihood ratio decision rule. We evaluate the performance of this
decision rule in both the matched and mismatched signal cases.
Our results show that in the matched signal case, ABORT’s detec-
tion performance exceeds that of ACE and is comparable to AMF
and GLRT. In the mismatched signal case, ABORT’s discrimina-
tion capability is better than AMF and GLRT, but not as good as
ACE’s.

1. INTRODUCTION

We assume that we have a set of training signals, zx, k =1,..., K
in an N-dimensional complex space, which are characterized by a
covariance matrix, R, unknown to us. Although R is unknown we
can estimate it by computing S

K
S = ZkakH (1)
k=1

We are given another signal  which is corrupted by zero-
mean complex Gaussian interference n with statistics character-
ized by R. z may also contain a signal proportional to the unit
vector v, with proportionality constant a. It may alternatively have
some other disturbance proportional to v where v is any vector
orthogonal to v. Or it may have only the interference.

*This work was sponsored by the United States Navy under Air Force
Contract F19628-95-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not necessarily endorsed
by the United States Air Force or the United States Navy.
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Research in the area of signal detection in the presence of
unknown interference has resulted in a number of adaptive de-
tection algorithms. None is clearly best (uniformly most power-
ful). Examples of such algorithms include the following: Adap-
tive Matched Filter [9], Generalized Likelihood Ratio Test [2], and
Adaptive Coherence Estimator [4].

Of these, the AMF has the least computational cost. One com-
putes
[v¥S'z |2

vHS-1y

and then tamr is compared to a threshold namr. If it exceeds the
threshold we say that a signal proportional to v is present, and
otherwise we say that it is absent. amr is selected as a compromise
between missing signals and reporting false alarms. Since w =
(S~'v)/v/v¥ S—1v may be computed in advance, the test reduces
to computing w z for each observation and comparing its energy
to a threshold, so it is rather efficient.

For the GLRT or ACE one computes one of the more compli-
cated expressions

taMF = =| wiz |2 2)

: _ |vHS_1x[2 3

OT = THS-15)(1 + 2851z ®
IvHS_1x|2

4

bace = (vES—1v)(zHS1z)

and compares it with a threshold 7Lrr OT 7ace.-

None of these three algorithms is uniformly most powerful,
and indeed no such algorithm is possible [1]. The choice of algo-
rithm must represent a compromise between good probability of
detection for weak signals, low probability of reporting false de-
tections due to strong signals perpendicular to v (sidelobe signals),
efficient computation, etc.

Recently we have begun to use two-stage algorithms. We use
the AMF criterion with a rather weak threshold to select signals
worthy of further consideration. Then we apply either ACE [7, 8]
or GLRT [5] to make a final decision. AMF decides if a signal is
likely to be present and then ACE (or GLRT) decides whether it is
likely to be proportional to v.

This paper introduces a new detection algorithm which we call
Adaptive Beamformer Orthogonal Rejection Test - ABORT. It can
also be used in a two-phase test where the first phase is again AMF.
In the second phase we ask whether the signal is more likely to lie
in the one-dimensional subspace v or in the complementary sub-
space v , given that we expect it to be corrupted by an interference
with covariance R, estimated by the sample covariance matrix S.

‘We summarize the procedure as follows:




o First we compute the estimated covariance matrix S using
(M.

o Next we compute w = (S~ 1v) /vVvES—1y.

e Then for each observation z we compute tamr using (2).

e We compare tamr With a threshold namr. If it is smaller,
we reject the hypothesis that a signal proportional to v is
present.

e Butif tamr > namr We compute

1+ tamr
24+ zHS 1y
and we compare this with another threshold 7. If it is less
than the threshold, we declare that the signal present is not

proportional to v. If it is greater than the threshold we de-
clare a detection.

=

The remainder of this paper provides the derivation and analy-
sis for the ABORT algorithm. In Section 2 we formulate ABORT
using a likelihood ratio framework. In Section 3 we illustrate with
an example the matched and mismatched performance of ABORT
relative to the AMF, GLRT and ACE detectors. Section 3 also pro-
vides the analysis which describes the matched and mismatched
probability of detection for the ABORT algorithm as well as the
probability of false alarm. Finally, in Section 4 we conclude with
a brief summary.

2. LIKELTHOOD RATIO TEST

In Section 1 we introduced ABORT as the second phase in a two-
phase test (AMF followed by ABORT). In this section we analyze
the performance of the ABORT. Although not shown here, it is
possible to choose the threshold of the first test (AMF) such that
the performance of the two-phase test is identical to ABORT alone.
For this case, the analysis below not only characterizes ABORT
but also the two-phase test. In an upcoming paper we will describe
how to choose thresholds for the two-phase test that satisfy this
condition.

ABORT decides if a complex N-component test vector 2 con-
tains a signal vector v or if z contains a signal v, where v, is
orthogonal to v. This problem is posed as a decision between two
possible hypotheses,

n+avy, orthogonal signal-in-noise, Hp
n+av,  signal-in-noise, H,

where a is an unknown complex scalar. We formulate ABORT
using a generalized likelihood ratio approach. The approach par-
allels the derivation for the GLRT given in [2]. Where possible we
use the same notation used in [2]. Let us begin with an expression
for the V-dimensional probability density function (PDF) for one
of the training vectors z,

flzx) = exp[—zf R™ 2], (6)

1
V|R|
where |R/| is the determinant of R.. Since all the training vectors

are independent and identically distributed, the joint PDF for the
test vector and all the training vectors is,

1 K41 K+1 o
-1
f(z,ml,‘..mx)={m—l} exp [—,;ka mk] .
Q)
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where we define £x 41 = r—ay in which y is v for hypothesis H;
and v, for hypothesis Ho. Noting that 7R~z = tr(R ™ zz¥),
we can express (7) as,

1 » K+1
f(z,xl,...zx)={1rN—mexp[—tr(R T)]} , (8

where T is the N x N matrix,

K
T= %H {(m-— ay)(z — ay)H +sz$f} )

k=1

In the likelihood ratio approach we maximize the PDF given
in (8) over the unknown parameters; namely R and a. First, we
maximize over the covariance matrix R assuming that ¥ > N
(typically 2N < K < 5N). As indicated in [2], the positive
definite matrix which maximizes the joint PDF in (8) is simply T.
If we replace R with T in (8) we obtain,

1 K+1
m=m€xf(m,z1,...zx)={m} . (10)

In what follows we separately maximize the expression given
in (10) over the remaining unknown parameters for each hypothe-
sis. Using the results in [2] we maximize m over g under hypoth-
esis H; as follows,

(K +1)N }K“
(em)N|S|(1 + zHS 1z — tamr) ’
11)

where S is defined in (1) and tawmr is defined in (2). Similarly, we
can use the results in [6] to maximize (10) over o and v, under
hypothesis Hy to infer,

3 (K +1)N K
i’f‘ﬁm"""{(ewwtsu1+tm>} - @

The generalized likelihood ratio test for ABORT is obtained by
comparing the ratio of (11) over (12) to a threshold. For conve-
nience we take the (K + 1) root of the resulting ratio to obtain
the following test,

maxm |H; = {
a

1+ tamr H,
1+a:HS"m—tAM1=1}<oe (13)

Note that the test given in (13) can also be expressed in an equiv-
alent and more convenient form after some simple algebra as fol-
lows,

; 14+tamr 1

t= ——————— > 4
2+a:HS—1z§on’ 14
where £ = ¢/(t+1) and 7j = £/(£+1). The likelihood ratio given
in (13) is convenient for analysis whereas the form given in (14) is
more suitable for implementation.

3. PERFORMANCE ANALYSIS

We begin this section with a performance curve for the ABORT
algorithm and relate it to the AMF, GLRT and ACE detection al-
gorithms. The curve for ABORT was generated with numerical




integration techniques using expressions derived in the following
subsections. We have confirmed these performance curves using
extensive Monte Carlo simulations.

The example we consider assumes a system of dimension N =
5 with K = 25 training vectors and we choose the detection
thresholds (name, noLrr, nace and 7) for each of the four tests
such that the average probability of false alarm in a noise only en-
vironment is Pea = 107%. In the figure we illustrate contours
of constant detection probability for the AMF, GLRT, ACE and
ABORT algorithms respectively. In these plots we vary the sig-
nal to interference plus noise power (0 dB < SINR < 25 dB)
and mismatch angle (0.2 < cos®8 < 1). The desirable proper-
ties for a candidate algorithm are higher detection probabilities for
strong matched signals and lower detection probabilities for weak
or mismatched signals. On the contour plots this corresponds to
higher detection probabilities in the upper right-hand corner and
lower detection probabilities elsewhere. We see that AMF does a
poor job discriminating between matched and mismatched signals
while we see that ACE appears to be too selective and sacrifices
Pp performance. GLRT has acceptable performance. However,
we see that the proposed ABORT algorithm has similar matched
performance as well as improved mismatched performance rela-
tive to the GLRT.

We derive analytical expressions for the probability of false
alarm as well as expressions for the probability of detection for
both matched and mismatched signals. In our analysis we first
derive the expression for the mismatched probability of detection,
then specialize this expression for the matched probability of de-

tection followed by the expression for the probability of false alarm.

3.1. Mismatched Probability of Detection

In this context mismatch refers to the angle in N-dimensional
space between the steering vector v used in the detector and the
received signal vy, contained in the test vector (we introduce the
notation vy, for the test vector to distinguish it from the steering
vector v). Note that vy, is aligned with v under hypothesis H;
and orthogonal to v under hypothesis Ho. In general, v, can be
divided into a v component and a v; component and so here we
assume the signal vector vy, arrives from a general direction pos-
sibly different from the steering vector v. To aide in our analysis
we define the cosine of the mismatched angle 6 between vy, and v
in the whitened space as follows,

Hp-1, 12
29— |‘U R vm[
cos™ 8 = (WHER-10)(vER - 1v,,) (15

Consider the likelihood ratio test given in (13). If we introduce the
quantity

_ 1
= 1+zHS 1z —tamr

Bs

(16)

referred to as the loss factor in [2] and [9], then we can express the
test given in (13) as follows,

- Hy
t=torr+ 0B 2 7, a7
Hy

where tirr = torrr/(1—torrr) and torrr is given in (3). The dis-
tribution of the test statistic ¢ depends on two random and related
quantities — a complex non-central F-distributed random variable
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Fy,1.(83,) (due to fLrr) and a complex non-central beta-distributed
random variable 35 (due to the loss factor) — as follows:

t < Fu1(6g,) + s - (18)

In (18) the non-centralilty parameter Jg, is related to the SINR
co = |a|? - vER v, - cos?(6) as 63, = cs - Bp and the integer
L = K — N +1. We assume that v, has unit norm, i.e. vEv,, =
1. Note that the two random quantities used to describe the test
statistics are related by B¢. The probability density function for
the random variable 3y has been derived in [3] and is expressible
in terms of the following finite sum,

L+41
£(Bs) = e*oP ; (L -Z 1) _(%!g)!séfuxx-wz(ﬂa) ,
(19)

where sg = |a|? - vER vy, - sin®(8) and fn,m(B) is the central
beta density defined as follows

(n+m—1)! 71 m-1
nm(B) E - ,0<8<1.
Fnim(8) = iy =)0 81
20
We define the mismatch probability of detection for ABORT as
the probability of choosing hypothesis Hj, i.e. using the relation
in (18) we say,

Po(0) =Pr[F1,.(68,) > 1 — Be]- (21
Using the finite sum expression for the cumulative distribution
function of a complex non-central F-distribution given in [2] to-

gether with the expression in (21), the mismatched probability of
detection for ABORT is as follows

Po(8) = f Po(6)18s - £(Bs)dfe 22)

where Pp(8)|Bs is the mismatched probability of detection for
ABORT conditioned on Gy as follows,

1 (L &3
—=1— — —_1)y" B
Po(6)lBe =1~ o m; (m) (7o = 1)"Gm ( - ) » (23)
in which 79 = 1 + 1 — (B¢ and the function G (z) is defined in
terms of the incomplete Gamma function I'(m, z) as follows

m—1 5

I'(m,z —z T

3.2. Matched Probability of Detection

The analytical expression for the probability of detection for a
matched signal is obtained by substituting # = 0 into (22) as
shown,

1
Po= Po(6=0) = /0 Polfo - f(Bo)dfo,  (25)

where the conditional probability of detection for a matched signal
is defined as follows,

1 (L 5
=1- = —-1)™ Bo ) .
Po|Bo " 2::1 (m) (to —1)"Gm ( ” ) (26)
Note that for the matched case with § = 0, the distribution of the
loss factor given in (16) reduces to the central beta density whose
PDF is given in (20).




3.3. Probability of False Alarm

The probability of false alarm for ABORT is defined in this con-
text as the probability of selecting the signal in noise hypothesis
(H1) when the SINR =0 (i.e., a = 0). We obtained the analytical
expression for the probability of false alarm from (25) by setting
a = 0. Hence, the Pra is as follows

1
Poa = / Pealo - £(Bo)do, @7)
o]

where Pra|Bo is the probability of false alarm conditioned on the
loss factor. After substituting a = 0 in (26) and using the Binomial
Theorem we obtain the following,

PealBo =1~ (28)

4. SUMMARY

We have developed and analyzed the ABORT algorithm that can
be efficiently implemented as part of a two-step detector. We have
demonstrated that the ABORT algorithm has matched signal de-
tection performance commensurate with the AMF and GLRT de-
tection algorithms which is generally an improvement over ACE
performance. Furthermore, we have demonstrated that the ABORT
algorithm has better mismatch discrimination capabilities than both
AMF and GLRT but not ACE. ABORT provides an alternative de-
tection strategy in the unknown mutichannel noise environment.
When faced with the tradeoff between matched signal detection
versus mismatched signal rejection, ABORT offers commensurate
matched signal detection performance as well as improved side-
lobe rejection performance relative to the benchmark GLRT de-
tector.
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ABSTRACT

Cramér-Rao bounds (CRBs) are often used in practice to ascer-
tain the effectiveness of a proposed parameter estimation algo-
rithm. Extensive research on CRB:s exists in the literature. CRBs
on target parameter estimates for the classical adaptive detec-
tion/estimation problem posed by Reed et. al. and Kelly for the
constant (Swerling 0) target case are deducible from existing re-
sults (Zeira 1990 and Francos 1995). Colored noise-only train-
ing losses are not reflected in the CRBs for Swerling 0 target
parameters. We briefly outline the argument for this and like-
wise extend analysis to include targets with Swerling II fluctua-
tions. For Swerling II targets the colored noise parameters are
coupled to those of the signal in the Fisher Information Matrix
(FIM). Thus, adaptive training losses are reflected in the CRBs;
however, the Maximum Likelihood (ML) estimates of the signal
parameters are biased in general. The CRBs are therefore only
accountable in the asymptotic regimes.

1. INTRODUCTION

Signal parameter estimation is an important part of many adap-
tive sensor array systems. The Cramér-Rao (lower) bound (CRB)
provides a useful metric from which one can often ascertain the
effectiveness of a proposed parameter estimation algorithm. The
CRB has been used extensively in the communications, radar, and
sonar communities. Existing results on signal parameter estima-
tion typically assume that several signal bearing data snapshots are
available for estimation [1]-[9]. In this analysis we address param-
eter accuracy within the context of adaptive estimation. Specifi-
cally, we assume that several signal bearing and several signal free
(training) snapshots are available for estimation. The goal is to
determine whether CRBs based on this totality of data will quan-
tify the observed loss in parameter accuracy due to colored noise
(noise + interference) only training. It is of interest to consider
CRBs for both constant (conditional/nonrandom) and Swerling II
fluctuating (unconditional/random) signal models.

The notational convention used throughout this paper is as fol-
lows. Boldfaced capitals represent matrices, e.g. A, and boldfaced
lower case represent column vectors, e.g. a. Real and complex
scalars will be denoted by italics, e.g. A. The scalar elements

* This work was sponsored by DARPA under Air Force contract
F19628-95-C-0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the author and are not necessarily endorsed by
the USAF.
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of a matrix (or vector) will be denoted with the same symbol in-
dexed, e.g. the element of A in the i-th row and j-th column is
given by A; . It is sometimes convenient to denote this also by

[Alik = A; k. The gradient of a multivariate function f(A) is
denoted by V a f and sometimes by % where the resulting gradi-
ent has the same dimensions as the matrix (or vector) A. Note that
[Vaflix = ﬁ-&. Differentiating a matrix of multivariate func-

tions is necessary on occasion. Hence, the notation g—;‘ represents
a matrix of derivatives where the i-th row and j-th column of this
BA;

matrix is given by —52=.

2. THE CRAMER-RAO BOUND INEQUALITY

The Cramér-Rao bound (CRB) is typically defined for and in-
volves differentiation with respect to real-valued parameters [10].
Many problems in array processing involve complex data (in phase
and quadrature components) and therefore complex-valued param-
eters. Considering the real and imaginary parts of each complex
parameter is one viable approach to keeping all parameters real so
that the classical formulations of the CRB can be applied to prob-
lems with complex parameters [6]. In this presentation, however,
CRB computations involving both real and complex parameters
simultaneously is considered. Two truths make this a rather pain-
less process: (i) converting real parameters (the real and imaginary
parts) to complex parameters can be considered a simple (linear)
change of coordinates, and (ii) the CRB is independent of the co-
ordinate system in which calculations are made.

Let the set of complex-valued and real-valued parameters be

denoted collectively by the vector a = [a1,az,...,a A]T. Define
the differential operator
P ( the usual partial )
— derivative wrt. , a€R
_6_ 2 da a real variable 6}
Oa 1f 8 8
3 |oRe(@ Yam@| ° °€°

Ifa € C, then % is defined by changing the —3 in eq(1) to +j.
Note that the complex differential operator is the usual one arising
from what is commonly referred to as Wirtinger calculus [13] from
which conjugate gradient based methods originate. This calculus
treats ¢ and a” as independent variables and allows computation
of CRBs involving complex parameters.




The parameters in a can be subdivided into two groups: (i)
parameters of interest, and (ii) nuisance parameters. It will be as-
sumed throughout that all parameters of interest are real. Let the
likelihood function of the data from which the parameters a will
be estimated be denoted by p. Define the elements of the Fisher
Information Matrix (FIM) by

Oa’day

2

Tk £ —E{ 0 lnp } , FIM2J =[] @)
Let J™' = [J**] and an unbiased estimate of a parameter of inter-
est be given by @;. The CRB inequality says that for any unbiased
estimate of a; with variance o2 :

a;

i > Jh, 3)

3. ADAPTIVE DETECTION AND ESTIMATION

In adaptive detection signal presence is sought in a complex N x 1
vector observation (or snapshot) xr often called the primary data
vector or fest cell. The goal is to classify the test cell into one of
two categories:

Ho:x=n, or H):x=Sv+n; 4)
noise only (null hypothesis Ho), or target signal plus noise (hy-
pothesis Hi). The noise is complex zero mean circular Gaussian
with covariance R. The covariance R is assumed to be an un-
known parameter. The target array response vector is denoted by
v and assumed to be a known quantity in the detection phase,
but post-detection is refined in the estimation phase. The sym-
bol S represents the complex target amplitude. It is assumed de-
terministic under the constant target model (Swerling 0), and as-
sumed complex Gaussian under the Swerling II assumption, i.e.
S~ CN(0,0%).

A secondary data set (or training set) consisting of L, data
samples' X = [x3]- - - |xz, ] is typically acquired, to estimate the
unknown R. It is assumed that each training snapshot x; is signal
free, zero mean, and shares the same covariance, i.e. cov(x;)=R
fore=1,...,L,.

3.1. Relevant System Losses in Detection

Researchers have quantified very useful measures which capture
the penalty for signal free training in the detection area. Two very
well-known metrics include: (i) the signal-to-interference plus noise
ratio (SINR) loss (related to probability of detection (PD)), and (i1)
the constant false alarm rate (CFAR) loss (related to the probability
of false alarm (PFA)).

The SINR loss is the additional SINR required in the adap-
tive case (with signal free training) in order to obtain the same
PD as one would in the clairvoyant (R known) case. The CFAR
loss is manifested by a higher threshold required in the adaptive
case versus the clairvoyant case to attain the same PFA. Figure 1
illustrates these losses. It plots PD versus SINR for three cases:
(i) the matched filter (MF), which is the optimal detector when
R is known, with constant signals, (ii) the adaptive matched filter

!'Under both hypotheses, it is assumed that L, > N.
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(AMF), which is the sample matrix inversion (SMI) [11] counter-
part of the MF for R unknown, with constant signals, and (iii) the
MF with Swerling II signals. The PFA was chosen to be 10~°6.
Note that for a PD of 0.9 the AMF requires an addition 6dB or so
more SINR than the MF. This difference in required SINR is due
exclusively to the need to train over the signal free data set, and is
referred to as the SINR loss. Similarly, the threshold for the MF is
11.4dB and for the AMF it is 20.4dB. The difference in threshold
values is again due to the signal free training and is referred to as
the CFAR loss.

Both of these measures have proven to be very useful in the de-
tection area. Can we quantify similar losses on bounds for achiev-
able parameter accuracy?

3.2. Losses in Parameter Accuracy

Once a signal is detected, signal parameters are estimated (re-
fined). These estimates are likewise based on the totality of data
available; namely, the test cell as well as the signal free training
set. In this analysis we shall assume that there are L, data vectors
containing the signal of interest, and L,, signal free data vectors.
This is to be contrasted with all of the literature on CRBs, which
typically assume that several signal bearing data vectors are avail-
able only.

When Ly = 1 and R is assumed known the CRB inequality
for the signal complex amplitude S is known to be

1

2
o ur > ——
S = yHR-1v

&)
The the Maximum Likelihood (ML) estimate of S when both R.
and S are unknown is known to be unbiased with a variance which
is proportional to this CRB

: 1 [ L. ]
%$mur T YAR-1y L,—N+1l" ©

The proportionality constant provides a direct measure of estima-
tion loss due to signal free training. Indeed, it gives a direct mea-
sure of the efficiency of the ML estimate. Will the CRBs on all
signal parameters quantify this observed loss due to signal free
training? Answering this question is the goal of this analysis.

4. PARAMETER ACCURACY FOR CONSTANT
TARGETS

The likelihood function for the complete data set consisting of L,
signal bearing snapshots and L., signal free snapshots is given by

po = 7r—~‘N(L,+L,,) . ,R]_(L5+Ln) x (7

k=1

La
exp [ = Y (xx — v )FR™ (x4 — vSi) ~ trR‘lxx”J

where it is assumed that the signal array response is parameterized
by the signal parameters of interest, i.e. v = vi{ul, g, ..., un)
where u,, € R. Let the parameter vector a be given by

a=[ul,uz,...,uM,Sl,Sz,...,SL‘,, (8)
51,83,...,51,, vec(R)]”




where the Si’s and R are considered nuisance parameters and

CRBs are sought for the parameters of interest u 2 [ui, ..., um]”.
Define
L, P
A a Ov
I ©

It can be can be shown that the elements of the FIM are given by

&lnpo | _ 0, l#k
—E{'_asl,_ask}—{ vHR_lv, l=k (10)

521111’0 2 H p-1 H -1
—E{m =|slI’ - (vi,,R™'vu, + vi,R v, ) (1)

azlnpo _ 821np0 i _
_E{aumask =|F Oum0S;, N

OVr~1 - -
_E{‘Ta'l}a—-,_lm}ﬂ/:sun)a ‘eief R7H (13)

where ey is the standard Euclidean basis vector. The cross terms of
the FIM between the elements of R (the colored noise parameters)
and those of u,, and S (the signal parameters) in theory should
capture the relevant losses in achievable accuracy of parameters
U, due to the need to train on signal free data. It can be shown,
however, that these cross terms are in fact zero, z.e.

vel R7'v (12)

8% Inpo _ 8% Inpo _

E { B8R oun | ~ T\ R, Oun | = O (19
8%Inpo _ 8% Inpo _

E { DRin 08 | © OR;, 0S| ~ o 1>
&lnpe | _ 8% In po _

olometr |- lamce) e o0

Zeira et al [1] and Francos et al [2] demonstrated this decoupling
for a single signal bearing snapshot via the Slepian-Bang formula.
Having multiple signal bearing snapshots and additional signal
free snapshots does not change this. Hence, inverting the FIM to
obtain the CRBs on the parameters u leads to the same results as
already appear in the literature. A somewhat unanticipated result.

5. PARAMETER ACCURACY FOR SWERLING I
TARGETS

If we now allow the target amplitudes Sj to fluctuate with Swer-
ling II statistics, then each signal bearing snapshot becomes zero
mean with a covariance matrix having both a signal component
and a noise component. The likelihood function for the full data
set is given by

Ls
prr=a NEetn) [H |R3k|"1:l JRJTE x an

k=1

L,
exp [—tr (R_IXXH + Z RE: XS, xgk)]

k=1
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where Rs, = R + ogk vv¥, Let the parameter set be given by

05, vec(R)]” (18)

where the elements of u remain the parameters of interest. The
elements of the FIM can in general be written as

821]1])11 _16R _13R
_E{___aaaﬁ} (R RReT) )

rS (n Beng .

The needed partials are given by

2
a=[u1,u2,...,UM, 085, -,

’ZTR,» =0 b%—% =0, (20)

Tt = o, (v +vedl), o

g?g& ={ S’VH, Zi; (22)
gﬁ%zaiz,_Rk_eiekH’ %=§%=eke{’. ©23)

Clearly, the cross terms of the FIM capturing the loss for estimat-
ing R are nonzero in this case. In the next section we consider
some numerical examples which explore the resulting CRBs on
angle accuracy and compare the root mean square (RMS) error of
ML estimates to the predicted CRB limits.

6. NUMERICAL EXAMPLES

Consider an angle of arrival estimation example consisting of an
N = 18 element uniform linear array (ULA) with A\/2 element
spacing in an environment consisting of a2 30dB (element JNR)
jammer located at array broadside in a background of spatially
white noise. Assume that L, = 1 signal bearing snapshot and
L = N signal free training samples are available for estimation.
The CRB on angle accuracy is plotted as a function of the true
signal angle for a 0dB SNR signal in figure 2.

The noise floor limit predicts that a pear 10 to 1 beamsplitting
ratio is possible. For constant targets note that as the the signal
approaches the broadside interference the achievable accuracy de-
clines and then returns to the noise floor limit when the signal is
coincident in angle with the jammer. For Swerling II targets and R
known, however, the fluctuation loss degrades this predicted accu-
racy at this coincidence. When training is considered the bounds
for the Swerling II target only change slightly near interference. If
L > 2N, then this difference is even smaller. This small deviation
from the R known case is an indication that although the cross
terms of the FIM capturing the signal training losses are nonzero
for the Swerling II case, they’re relatively small compared to the
other elements of the FIM.

Practically speaking the CRB is simply a bound on achievable
performance. There exist no instructions on how one can achieve
this bound. We do know, however, that if an efficient unbiased es-
timate of a parameter exists, then it is the ML estimate [10]. In the
next section we consider the RMS performance of ML estimates
and examine there closeness to the CRB.




6.1. Maximum Likelihood Estimation

As in the previous section we restrict attention to Ls = 1 signal
bearing and L, signal free snapshots. Recall that u = (w1, ..., uml,
and define the sample covariance matrix (SCM) and the AMF
statistic (as a function of the unknown signal parameters of in-
terest) respectively as

R2 Lxx# (24)
L.
and
H B-1_2
tamr(u, ... uy) 2 V@R (25)

vH(u)R-1v(u)

For constant targets it can be shown that the ML estimates of the
unknown parameters of interest are given by

Ump = argmax tamr(uy, ..., un), (26)
u

and for Swerling II targets a quasi-ML estimate is given by
Upr = argmax tAMp(u)-—ln[tAMp(u)]. 27

In both cases these ML estimates involve several nonlinear opera-
tions. It is known [10] that the ML estimates will achieve the CRB
non-asymptotically if and only if its error can be expressed as a
linear combination of the gradient of the log likelihood:

amr —a=(a) Valn p (x7, Xla). (28)

Using this theorem it can be shown for both signal models that for
the adaptive array problem an efficient unbiased estimate of the
signal parameters does not exist non-asymptotically.

6.1.1. More Numerical Results

Using Monte-Carlo simulations (5000 trials for each point) the
RMS error and bias of the ML angle estimators of the previous
section are plotted in figures 3 - 7 for exactly the same ULA inter-
ference environment.? Note that in the constant signal case when
the target is away from the interferer and R is known exactly the
ML estimator does an excellent job obtaining the CRB as it is least
biased in this region. As the signal approaches broadside the bias
increases and the RMS of the ML estimator deviates significantly
from the bound. When the signal is coincident with the interferer
the bias returns to zero but the RMS of the ML estimator reaches
its maximal deviation from the CRB. This large deviation is due
to the inherent nature of the MF and AMF statistics to provide
unit variance on noise plus interference. When the signal and jam-
mer are coincident in angle the signal gets nulled along with the
jammer and the resulting ML search surface is approximately flat
(0dB). See figure 5 which illustrates the average ML search sur-
face for various true target positions. Away from broadside there
is a nice clear peak at the true target position as one searches over
angle. When the target and jammer are coincident the search sur-
face flattens out. The RMS for the ML estimator, in fact, is less
than a beamwidth away from the RMS one would obtain if the ML
estimator were uniformly distributed between 0 and 180 degrees.

2The ML searches in angle are performed over all possible angles. In
practice, however, the search is likely to be limited to a beamwidth or so
around the mainlobe. So the results are somewhat conservative.
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Note in figure 3 the apparent loss in angle accuracy due to
signal free data training. It is this loss which we sought the CRB
to quantify. As one might expect, the bias and the RMS of the ML
estimators decrease with increased sample support L. Curiously,
for L, = N the bias appears to be approximately linear in signal
angle.

In the Swerling II signal case note the apparent bias in fig-
ure 7. Even when R. is known perfectly there’s a significant bias
in the ML estimator. The signal fluctuations causes the RMS er-
ror to deviate significantly from the predicted CRB for ali signal
angles for the given SNR and array configuration. The bias in the
ML estimates in these non-asymptotic cases liberates the predicted
CRBs from unaccountability in the non-asymptotic (low SNR and
threshold) regimes.

7. CONCLUSIONS

In the adaptive estimation problem several signal bearing data snap-
shots and several signal free snapshots (training set) are assumed
available. It appears that all existing results on signal parameter ac-
curacy have only considered CRBs based on having several signal
bearing snapshots available. In detection many useful measures
have been develop which quantify the loss in performance due to
the need to train over the signal free snapshots. In this analysis
we sought the CRB to provide analogous measures for bounds on
parameter accuracy. The case of constant signals as well as signal
with Swerling II fluctuations have been considered. It was shown
that for the constant signal case the CRBs do not reflect the ob-
served losses in achievable parameter accuracy due to signal free
training. In contrast, the CRBs for the Swerling 1I case do reflect
these losses for unbiased estimates. The predicted loss in accuracy
due to signal free training is negligible away from interference in
the cases considered.

The ML estimates in both signal model cases are in general
biased, but asymptotically unbiased. Therefore the CRBs for un-
biased estimators that have been considered here are only account-
able in the high SINR superfluous training sample case.

Finally, it should be mentioned that bounds other than the CRB
do exist, and may do a better job quantify the training loss in pa-
rameter accuracy.
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ABSTRACT

We investigate the problem of nonuniform array design and suit-
able signal processing for the improved DOA estimation of mixed
fully correlated and uncorrelated sources. We demonstrate that
partial-array geometry design together with the generalised spa-
tial smoothing technique and covariance fitting are a suitable frame-
work with respect to a trade-off between DOA estimation perfor-
mance for fully correlated and uncorrelated sources.

1. INTRODUCTION

In many applications, such as passive source location or jammer
mapping, the true directions of sources should be discriminated
from multipath directions for some relatively small number of mul-
tipath sources embedded in a substantial number of single-mode
propagated sources [1]. The main problem here is to select a
supporting antenna array geometry and corresponding signal pro-
cessing technique. Indeed, DOA estimation of fully correlated
sources advocates significant redundancy in array geometry, ul-
timately preferring a uniform array and standard spatial smooth-
ing [2]. Conversely, given a particular number of antenna chan-
nels M available for digital processing (elements, subarrays, efc.),
sparse (minimum redundancy) arrays are preferable for uncorre-
Jated Gaussian sources because larger aperture means better res-
olution; moreover, sparse arrays allow estimation of a “superior”
number of sources (m > M), impossible with a uniform array.

For a small number of multipath sources, we have introduced
[3, 4] a special class of nonuniform geometry with embedded “par-
tial arrays” that permits generalised spatial smoothing (GSS) over
some number of such subarrays with identical covariance lag struc-
ture. The number of elements in each partial array only marginally
exceeds the expected (small) number of multipath sources, reduc-
ing the overall redundancy to a level required for the effective res-
olution of these sources.

Naturally when some additional uncorrelated sources are pres-
ent, the “partial-array” covariance matrix estimated via spatial av-
eraging becomes “saturated”, ie. of full rank, that makes multipath
resolution impossible. Clearly, we need to differentiate uncorre-
lated and fully correlated sources in order to avoid this saturation
and to enable effective multipath resolution. Such a technique is
introduced and analysed in this paper.

2. ALGORITHM DESCRIPTION

Consider an M -element sparse linear array with sensors located at
positions d = [dy =0, do, ..., dm] measured in half-wavelength
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units. The DOA estimation problem for m. uncorrelated and m.
fully correlated multipath-propagated sources can be formulated
as the estimation of an unknown azimuthal angle parameter 8 =
[64, 8.1, - .., Bcm, ] in the equation

y(t) = @) + S EOSOb +n(®) (D

i=1

fort = 1, ...,T, where y(t) € CM*! is the column vector of
array sensor outputs observed at time ¢ (the “snapshot™); 5(8.) €
CM*™u is the array manifold matrix; z(t) € C**" is the vector
of uncorrelated Gaussian signal amplitudes; b; is the “non-zero”
eigenvector of the rank-one covariance matrix B; of the 5" set of
¢; multipath signals with DOA's 8; = [0, ...,80); &(t) is
the complex amplitude of the j** multipath signal; n(t) € CM**
is additive noise, and C?*9 is the space of p x g complex-valued
matrices.
For this model

£{m(tr) 27 (t2)) ={ o morae @

with P = diag[pi, ...,Pm.]- We also assume that the additive
noise is white and Gaussian:

I for b =
g{n(tl)nﬂ(b)h{ o o ohzn O
with
so@EE =1 G 1T @

and so this model is explicitly described by the M-variate Hermi-
tian spatial covariance matrix R given by

R=5(8.)PS"(8.)+ ) 05S(0c)b;b5 S¥ (8c) + o lns -
i=1

&)
In what follows, we restrict our investigation to the class of iden-
tifiable scenarios. By this assumption we exclude the subset of
“manifoldly ambiguous™ scenarios that for fully correlated sources
are proven to be nonidentifiable (for a Gaussian model). Practi-
cally, this means that all synthetic wavefronts of fully correlated
wavefronts in (5) are not identical to the plane-wave model, ie.

S(0;)b; # as(f) for any 6. 6)




We make the additional assumption (essential for the proposed
method) that the overall signal subspace dimension of the covari-
ance matrix is less than its dimension, ie.

mM=mu+m. <M. ™

With these assumptions, our approach to identifying the uncorre-
lated sources given the sample covariance matrix R

T
R= %;ymy”m ®)

is quite straightforward. Whereas the above mentioned signal-sub-
space dimension (m + m.) could be established via traditional
information criteria, the standard MUSIC technique

0. = min s7(8) Grr—im Crrm s(9) &)

could provide the DOA estimates for the uncorrelated sources.
Here G ps— is the M x (M — 7n) matrix of noise-subspace eigen-
vectors of the matrix R. The only essential difference with respect
to standard MUSIC is that only 2, < 7 dominant peaks are asso-
ciated with the DOA’s of uncorrelated sources. With respect to the
identifiability assumption (6) for large sample support (7" >> 1)
essential for covariance-matching methods, this option is quite re-
liable.

The crucial point in our technique is now to get an estimate of
fully correlated counterpart R of the covariance matrix R. Sev-
eral options could be considered. First of all, with the set 8, of
DOA estimates for uncorrelated sources, one can reject these sig-
nals from the input mixture and get a covariance matrix estimate
R. as aresult of projection:

RY —pRP (10)

P=1-58.)[s%(8.)S(8.)] 7" s¥(8.). (1)
Clearly such an approach, if it works, could be effective in the pre-
asymptotic domain for comparatively small sample support, pro-
vided that the set of DOA estimates 8, for uncorrelated sources
is sufficiently accurate. On the other hand, the plane-wavefront
model that is essential for spatial averaging principles is no longer

accurate as a result of such a transformation. Effectively, the com-
ponent

85(6;) = —S(8.) [$7(8.)5(8.)] 7' SF(8.) s(8,)  (12)

could be treated as 2 specific distortion of the plane wavefront
3(6;), that limits the efficiency of spatial smoothing. Obviously,
this distortion is scenario-specific, and only for comparatively large
separation between correlated and uncorrelated sources, when

2

|87 (6u;) 5(6ee)
8H(6u;) 3(0us) 87 (8ce) 8(6ee)

where 8.; and 6., are the DOA’s of the uncorrelated and correlated
sources respectively, one can expect that this distortion could be
tolerated. Clearly, the signal-to-noise ratio as well as an increased
sample support cannot improve the spatial averaging accuracy that
is limited by this distortion.

Another approach that can be proposed for an asymptotically
large sample volume T, is to get an estimate RS") of the fully

<1 (13)
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correlated component of the covariance matrix B by extracting an
estimate of the uncorrelated component:

R® = R—5(6.) PSH(8.) (14)

where P is the m-variate diagonal matrix of power estimates for
uncorrelated sources. Obviously, this is a covariance-matching
type of technique, similar to COMET [5] or to the augmentation
technique of Pillai et al. [6]. To ensure the zero-mean cross-terms
in the sample covariance matrix are insignificant, the required sam-
ple support must be sufficiently large for these techniques. For the
specified condition on the overall number of sources (7), the power
estimates for uncorrelated sources could be obtained directly by

. 1

Though this is an asymptotically efficient estimate, it does not
guarantee that the covariance matrix R is positive definite. A
condition on the power estimates p; (j = 1, ..., ) that keeps
R® positive definite, ie.

RO = R-"p;8(6;u) 6% (6;u) > 0 (16)
=1

is given by a standard LMI (linear matrix inequality) problem and
the convex programming technique [7] can be used to find an ap-
propriate solution. For example, the standard LMI problem

Find min —Zﬁj subject to Rﬁ2)>0 17
i=1

leads to the maximum power estimates 5; that keeps Rﬁz) positive
definite. Now, when the “best” estimate for the correlated compo-
nent of the input covariance matrix is defined (}‘29) or B ), we
may apply the generalised spatial smoothing (GSS) technique for
multipath DOA estimation [4, 8).

Here we consider the DOA estimation problem for some small
pre-specified maximum number of coherent signals m (of arbi-
trary configuration) using the special class of partial-array NLA
geometries and the corresponding generalised spatial smoothing
(GSS) algorithm.

Let the co-sequence of an array d be its set of (M~—1) consec-
utive intersensor separations (je. differences), while its co-array is
the sorted set of M (M —1)/2 differences. We define a partial ar-
ray to be a group of nonuniform linear noncontiguous sub-arrays
of identical co-sequence structure [3]. Associated with each partial
array are its multiplicity x (number of occurrences or instances),
order £ (number of co-sequence elements involved), and aperture
a. A given NLA will have n embedded partial arrays, with a to-
tal of IV instances. The GSS technique may be applied to a NLA
providing it yields at least one partial array of multiplicity x > m
and order £ > m, where m is the number of fully correlated sig-
nals. Examples of partial arrays and their properties are more fully
discussed in [9].

The GSS algorithm introduced in [3] consists of an initialisa-
tion step followed by local ML refinement. The initialisation step
is based on the PA-MUSIC approach involving all appropriate par-
tial arrays.




Suppose that an NLA yields a n partial arrays, each of mul-
tiplicity :, order £; and aperture a; (z = 1,...,n). Let Afk) be
a (€& + 1) x M selection matrix with 1 in each row on the posi-
tion of the j** element of the k** instance this i*" partial array,
7 =1, ..., (€ + 1). Then the covariance matrix for this instance
of the partial array is

B = AR Rt oTM) (18)

If any instance of a partial array occurs as a mirror image (ie. in
reverse order), then the corresponding matrix should be reversed
and complexly conjugated:

BR = J[AR) R0 4TH 4 (19)

where

J= _ : 20)
1

Thus for each partial array we may define the (£; + 1) x (¢ + 1)
partial array covariance matrix by spatial smoothing to be

Ri=>"R"Y. @1
k=1

Let G, be the noise eigen-subspace of R, then G; consists of
at least one eigenvector (since m <« M). The PA-MUSIC tech-
nique is:

find max fra(8) o= meinZa?(H)éi GFai) (2

=1

where ai(6) is the (£; + 1)-variate manifold (“steering”) vector
which corresponds to the given partial array geometry. Evidently
this approach eliminates non-coinciding ambiguities. More specif-
ically, the co-array of the synthetic partial array that is constructed
by all of the properly averaged covariance lags produced by all
of the partial arrays, should have a manifold dimensionality that
exceeds the pre-defined number of fully correlated sources. Thus
the effectiveness of DOA estimation delivered by GSS is directly
related to the number, variety and x£a—properties of the available
partial arrays. For this reason, the sum Z;;l a? = A could be
treated as a cost function for antenna geometry optimisation. De-
tails of a three-stage optimisation approach appear in [9].

3. SIMULATION RESULTS

The following example illustrates array geometry optimisation re-
sults for a 16-element array. The initial choice M1 = 10 gives us
the starting-point 10-element non-redundant Sverdlik array [10]

dl? =[0,1,6,10, 23,26, 34, 41, 53, 55) . (23)

The exhaustive tree search of stage two yields 37 candidate gap-
free geometries, each with 14 elements and 36 redundancies. The
integer programming maximisation of stage three finds that of these
candidates, one in particular is the best (in the search range £ = 3
and ¢ € [1, 18)), since with the addition of two sensors (8,19) it
yields the 16-element NLA

dss = [0,1,5,6,8,10,19, 23, 26, 34, 37, 41,44, 52, 53, 55
- (24)
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Table 1: Partial array distribution by multiplicity («) and order (£)
for dss for m = 3 and the search range £ € 3, 5] and ¢ € [1, 30].
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Figure 1: Aperture histogram of partial arrays embedded in dss.

having the maximal cost function A = 38467 (and 65 redundan-
cies). Thus we have partitioned our M = 16 elements in this
example by {M; = 10, M, = 4, M = 2}.

Table 1 shows the x{-distribution and Fig. 1 illustrates the a-
distribution of partial arrays for dss for the expanded search range
£ € [3,5] and ¢ € [1,30], whence we find A = 99441. This
array performs better than the 16-element ULA because of the
large numbers of embedded partial arrays, each of significant aper-
ture. The minimum-redundancy array of comparable total aperture
(Mo = 58) has 13 elements, so we could consider dss to be a type
of “optimal” solution by the introduction of only three additional
elements to the minimum-redundancy structure.

Table 1 makes it clear that uncorrelated signals, if not prop-
erly removed from the covariance matrix estimate, “saturate” the
partial-array covariance matrix so that the noise subspace disap-
pears.

Thus for the following scenario of dss with m, = 3 uncor-
related and two fully correlated sources, the introduced technique
does not seem to have an obvious alternative. The set of DOA’s
wy, = [—0.4, —0.2, 0.6] for uncorrelated sources and the corre-
lated DOA’s w . = [0, 0.1] were selected to demonstrate the abil-
ity to properly resolve multipath in severe super-resolution condi-
tions for a 16-element array. The sample support has been selected
large enough to accommodate the covariance-matching technique
(T = 10*), with experiments involving SNR of 0, 10 and 20 dB
for each signal. Our calculations started from the true (determin-
istic) M -variate covariance matrix of the input mixture in order to
verify the asymptotic (I" — oo) properties of our technique.

As expected, standard MUSIC unambiguously extracts uncor-
related sources (Fig. 2), so that both projection and power estima-
tion used to create R$" and R respectively, are also accurate.
Nevertheless, the partial-array (PA) MUSIC pseudo-spectrum for
projection technique (1'29)) illustrated by Fig. 3 exhibits signifi-
cant distortions that lead to a significant sidelobe level of —2 dB.
Clearly, such technique must lead to a significant probability of
abnormal estimates, when wrong (sidelobe) directions are selected
instead of the true ones.

On the contrary, spatial averaging for R resultsina perfect
resolution of the multipath, illustrated by Fig. 4. Obviously, the




BY TR [ R RO [ RP | A | RD [ RO | &

Probability of Outlier(s) || 0.356 | 0.208 | 0.037 || 0.385 | 0.088 | 0.004 || 0.430 | 0.124 | 0.000
Bias (x107%) 18 9 4 19 5 1 19 4 0
Std Dev (x10™%) 10 11 8 8 7 2 7 7 0

Table 2: Simulation results for T = 10* with SNR of 0 dB (left), 10 dB (middle) and 20 dB (right).

absence of cross-terms makes this estimation ideal and advocates
for a reasonable asymptotic accuracy, while the accuracy given by
the projection technique could hardly be improved upon either by
larger sample volume T or by larger SNR.

On the other hand, the covariance-matching technique is found
to be quite sensitive with respect to the accuracy of uncorrelated-
source power estimates. For the same accurate R and 8., Fig. 5 il-
lustrates the PA-MUSIC pseudo-spectrum for the set of inaccurate
power estimates p = [93.6, 74.8, 111.9] produced by a different
(linear-programming based [11]) matching technique. Clearly, in-
accurate rejection of the uncorrelated sources covariance matrix
leads to a significant distortion in PA-MUSIC pseudo-spectrum.

Finally, sample PA-MUSIC pseudo-spectraare given in Figs. 6
and 7 for projection and for covariance matching options respec-
tively. These figures demonstrate that for 7' = 10* both methods
exhibit asymptotic properties, close enough to the results obtained
for the exact covariance matrix R.

The statistical efficiency of the introduced technique has been
analysed via 1000 Monte-Carlo trials each, with the results pre-
sented at Table 2. For several SNR’s, the bias and standard devia-
tion are presented for the least accurate DOA estimate, along with
the sample probability of abnormal estimation (when some side-
lobe exceeds a correct peak in the MUSIC pseudo-spectrum). For
comparison, similar data is presented for the GSS technique when
no uncorrelated sources are present.

We see that only for the case when no uncorrelated signals are
present, an increase in SNR directly improves the multipath res-
olution performance. For both techniques, linked with extraction
of the correlated sources, performance parameters are practically
stable for any SNR that exceeds a comparatively low level (about
0 dB). These results also demonstrate that direct suppression of
uncorrelated signals in input data prior to GSS leads to a signif-
icant distortion in the plane-wave model and consequently, to an
unacceptable estimation accuracy with almost 50% wrong iden-
tification. The covariance-matching technique is more appropri-
ate, though the sample support required for proper identification is
quite significant.

4. SUMMARY AND CONCLUSIONS

We have demonstrated that specifically designed nonuniform lin-
ear antenna arrays supported by an appropriate signal processing
technique, can address the problem of DOA estimation for a mix-
ture of uncorrelated and a small number of fully correlated (mul-
tipath) signals. It has been shown that direct rejection of identi-
fied uncorrelated sources leads to an inappropriate degradation in
multipath resolution due to a significant distortion introduced by
the plane-wave model. While a covariance-matching technique is
more appropriate, the sample support required for reliable perfor-
mance is asymptotically large. This final requirement is common
for most covariance-matching-type techniques, typical for nonuni-
form antenna array applications [12, 13].
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ABSTRACT

The problem of estimating an array manifold from calibra-
tion data, o from a set of response vectors on a fixed grid,
is considered. It is argued that points in the array mani-
fold should be viewed as elements of complex projective
space, and in this context a technique for estimating
smooth functions from azimuth/elevation to complex pro-
Jjective space is proposed. The proposed technigue com-
prises 5 steps: 1) free-space phase compensation, 2) com-
putation of a sequence of rank-one projections, 3)
weighted least-squares fitting of the projections using a
spherical harmonic basis, 4) principal component analysis
at each direction, and 5) restoration of free-space phase.
A simulation demonstrating the application of this tech-
nique to an airborne circular array, with clutter returns
used as calibration data, is presented.

1. INTRODUCTION

Array calibration is an important practical concern
in the implementation of high-resolution sensor arrays for
surveillance applications. The success or failure of vari-
ous high-resolution adaptive array processing algorithms
depends critically on accurate knowledge of the array
response. Methods for determining this array response
under realistic conditions, or even when the array is in
operation, are highly desirable.

The idea of using clutter returns for airborne array
calibration was proposed by Robey and presented in a
series of papers by Robey e al [1] and Koerber and
Fuhrmann [2,3]. The basic principle is to exploit the
redundancy or deterministic relationship between azimuth
and Doppler at zero velocity. The technique is this: for
each CPI, resolve all radar returns in Doppler but do not
carry out any spatial processing. A column from the data
cube at Doppler f,, may be considered as a sample of the
spatial response at the associated azimuth ¢,,. Using the
collection of such columns over multiple range gates, an
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estimate of the spatial response vector a{¢,,) can then be
determined using principal component analysis.

In the original formulation of the calibration-on-
clutter concept, it was assumed that the airborne array was
a uniform linear array, and as such there was little if any
range dependence in the array response. Thus, the data
from multiple range gates at Doppler f,, could be consid-
ered as independent samples all supporting an estimate of
the response vector at azimuth ¢,,. However, the next gen-
eration of airborne radar arrays will in all probability not
be uniform linear arrays. For example, in a STAP system
under development for the U.S. Navy E-2C surveillance
aircraft, the radar includes an electronically-steerable cir-
cular ring array of UHF antennas. It has been shown that
such an array has a non-negligible range dependence in its
response [4].

In the circular array, or in any planar array, it is clear
that in the calibration process one should seek a descrip-
tion of the array response as a function of both azimuth
and elevation. The data which are available to support
such an estimate consist of one vector each from a grid in
azimuth/elevation space. What is then needed is 2 mecha-
nism for filtering or smoothing the data to create a descrip-
tion of the array manifold over the entire continuous
azimuth/elevation domain. The difficulty in doing so is
that each data vector is not an element of the array mani-
fold; rather it is the response vector multiplied by an
unknown complex scalar which accounts for clutter reflec-
tivity, range attenuation, and other factors.

Formally, the problem is this. Letz;, k=1--- K be
a set of complex vectors in CV, where each k represents an
index into azimuth/elevation space. Each data vector can
be written as

z; = a0, 9p)s; + My (1.1

where a(0;, ;) is the array response vector at elevation 0,
and azimuth ¢;, s; is an unknown complex scalar, and n;
is an additive noise term. For the remainder of this paper




it will be assumed that the power of n;, is small and can be
ignored, hence the problem becomes more one of data-
fitting rather than statistical estimation. The problem is to
determine the array manifold over all (8, ¢) from this finite
set of data vectors.

2. WHAT IS THE ARRAY MANIFOLD?

Before tackling the estimation problem posed above,
it is appropriate to take up the question of exactly what is
meant by the term array manifold. In most published defi-
nitions, it is simply the set of all response vectors a(6, ¢).
In this definition, the array response vector itself must be
carefully defined. When we say that

z(t) = a(8,9)s(1)

two features of the array response are implicitly assumed.
First, s(r) must be defined as the field strength at a particu-
lar spatial reference point, which may or may not be one
of the sensor locations. All free-space phase calculations
are made relative to this reference. Second, a(6, ) has
units associated with it, that being the ratio of the units of
the output of the receiver (volts, say), to the units of the
incident field strength (volts/meter). [Aside: in some defi-
nitions, s(¢) is the output of one of the sensors, and the
gains and phases of the sensors are all expressed relative to
the reference sensor. This definition is problematic when
the gain of the reference sensor becomes small in a partic-
ular direction.]

Now most adaptive array processing algorithms are
invariant to the choice of spatial reference or the units of
gain, since 1) phase terms are usually cancelled out in the
formation of beamformer weight vectors, sample covari-
ance matrices, and the like, and 2) the choice of gain units
does not affect SNR. However, for the purposes of
describing the array manifold, the choice of the spatial ref-
erence actually makes a difference, since it affects the
"shape" of the array manifold considered as a submanifold
of CN. Attempts at interpolating the array manifold or fit-
ting it to a set of basis functions would thus depend
strongly on the selection of a parameter which is irrelevant
to the signal processing objectives.

For this reason, we argue that the appropriate quan-
tity to use in defining the array manifold is the equivalence
class of vectors given by sa(@,$) where s ranges over all
complex scalars. This equivalence class is exactly the
one-dimensional vector space span{a(@,)}. The space of
all one-dimensional subspaces of CV is called complex
projective space, and is denoted CPY. With this viewpoint
the array manifold may be considered a submanifold of
CPY. The problem of array calibration becomes one of
estimating a function P: S — CP". The challenge is that
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CP" is a non-Euclidean space, and thus standard sorts of
fitting procedures, such as expansions in terms of orthogo-
nal bases, are not directly applicable.

The work described in the following sections repre-
sents an initial attempt at this interesting problem. We
take a hybrid approach, in that a coordinate representation
of each point in CPY is used, and these coordinates are in
fact filtered using an appropriate set of orthogonal basis
functions (the spherical harmonics). After filtering, the
resulting set of points no longer lie in CP”, but are
assurned close and can be projected back into that space.

We now formally re-state the problem first given in
Section 1. Let z;, k=1--- K, be a set of vectors in G ¥
where k is an index into azimuth/elevation space, as in
(1.1). Associate with each vector a(@,¢) the operator
P(8,9), the projection operator onto the space
span{a(6,¢)}. The problem is to estimate the function
P: 5% — CP" which best explains the available data.

3. PROPOSED TECHNIQUE

Our proposed technique comprises 5 steps: 1) free-
space phase compensation, 2) formation of a set of rank-
one projection matrices, 3) weighted least-squares fitting
of the matrices using spherical harmonic basis functions,
4) principal component analysis for projecting the results
back into CP", and 5) restoring the free-space phase.
Each of these steps will be explained in the following sub-
sections.

In the following description, we will use the nota-
tion P to describe a point in CPV, and the notation P to
denote a rank-one projection matrix. P is the matrix
description of the projection operator onto a 1-dimensional
subspace, and it uniquely identifies that subspace.
Although it is an not an efficient technique, we will use
P(8, ) to be a coordinate representation for the point P on
the array manifold at direction (8, ¢).

3.1. Free-Space Phase Compensation

The first step in the proposed processing is to

remove the effects of phase shifts due to nominal sensor
. K'x

location. These phase shifts are given by ¢’ znT, where x
is the sensor position, K is a unit vector pointing in the
direction (6,¢), and A is the wavelength. These phase
shifts are usually the most significant factor defining the
array response, but since they are known and cause the
array response to vary rapidly with direction, it is desirable
to remove their effect in array calibration.

The array response vector a(8, ) can be written in
the form




a(6,¢) = a(6,9)ob(6, ) (R

where b(8, ¢) is the vector of free-space phase shifts, and
O represents pointwise or Hadamard vector multiplication.
(6, ¢) is then a pointwise multiplicative deviation from
the nominal response. In an array of omnidirectional sen-
sors, 4(6,¢) is the all-ones vector at all (6,¢). Our
approach to array calibration is to estimate &, which is
assumed slowly-varying with respect to direction.

Free-space phase compensation is meaningful as
well when we consider the array manifold to be the set of
projection operators P(6, ¢) as described in Section 2. In
this case we have

P(6,9) = P(6,0)0lb(6,0b"(6,0)] . (32)

Both P and P are rank-one projection matrices. An equiv-
alent representation for P would be

P(6,9) B(B, 0)P(6, ))B"(8,9) (33)

where B(6,0) = diag{b(6,0)}. Since B is a diagonal
matrix with unit-norm diagonal elements it represents a
unitary transformation.

To apply free-space compensation directly to the
data, we compute

Z = 2,0b (85, 01) - (34

The Z, are then used to estimate P(6, 9).

3.2. Sample Projection Matrix Computation

Every Z, is assumed to be an estimate of (8, ¢;),
scaled by an unknown complex constant. An estimate of
P(0;, d;) can be formed according to

R L7
PO, 00 = 5 - (3.5)
k Zk

In the noiseless case, P(ek, ¢;) would be exactly equal to
P(8;, 0y), but in the presence of noise or model inaccura-
cies there will be some error. The step described in the
next section takes the entire set of P(8y, ¢;) and in effect
filters them by fitting the set to a low-order orthogonal
expansion in the space of Hermitian matrices.

3.3. Weighted Least-Squares Fitting with Spherical
Harmonics

This subsection describes the key step in the calibra-
tion process, that of finding a smooth function to fit to the
data points P,. At this point, we consider the matrices P,
not as points in CP", but rather as elements of the larger
space of N x N Hermitian matrices. This larger space is a
Euclidean vector space, and so techniques for fitting the
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data to set of basis functions apply. It is recognized that
the result, after fitting, will not be a matrix function which
takes values in CP".

A simple analogy to the fitting procedure is this.
Let x, --- xx be a sequence of vectors in R2, all of which
have unit norm, i.e., they take values on the unit circle. If
a lowpass filter is applied independently to each of the
components of the x; sequence, the resulting set of points
¥1 -+ yx will not necessarily fall on the unit circle. How-
ever, it is a simple matter to project each of the y, back
onto the unit circle to complete the fitting procedure.

For our problem, the domain of the desired smooth
function is the sphere S?, and the range is CP". For a
low-order series expansion, we need to identify a set of
functions f: §? — C which are orthonormal on the sphere
and which increase in variability with increasing order.
Such a set of functions are the spherical harmonics.
These are a set of complex-valued functions Y},(6,¢)
which are orthonormal on the sphere and which form a
complete basis for the Hilbert space of integrable func-
tions on the sphere. They are analogous to the complex
exponentials, which form a basis for integrable functions
on the circle, as represented in Fourier series expansions.

The spherical harmonic basis functions have two
indices, ! and m, such that />0 and -/ <m < /. Each
Y;,,(8, ¢) can factored according to

Y1m(8,9) = An(®)Bym(8) - (3.6)

The functions 4,,(¢) are simply complex exponentials in
azimuth:

An(®) = % o 3.7)

The functions Bj;,,|(0) are real solutions to the differential
equation

sin® d

B dé

and are all /th-order trigonometric polynomials. Recursive

formulas for these functions and explicit expressions for

lower-order ones may found in standard references in
quantum mechanics [5].

dB
(sinezé)+l(l+l)sin29 = -m? (3.8)

The simplest fitting procedure involving the data P,
and the basis functions Y, up to order / = L would be to
choose coefficients ¢4, to minimize the squared error in
the expression

L1
P00 = X X Yi(®p0)cym - (.9)

I=0 m=-1

This can be set up as a straightforward matrix-vector least-
squares problem which can be solved using standard tools




such as those available in MATLAB.

One drawback to the simple least-squares approach
is that it gives equal weight to each of the fk. As an alter-
native, one might wish to give more weight to the larger
vectors z;, because they should have greater influence.
Accordingly, one could solve for the coefficients Cijim
through the minimization problem

2

K L1
min Y jz; Pi(®n,00) = 2 X Yim(8k, 0p)cyy |(3-10)
Cijim fe=] 1=0 m=—1

Again, this is easily solved using standard tools.

The weighted least-squares approach may appear ad
hoc, but it can be motivated by the following arguments.
Suppose one is given a set of vectors X, - - - Xx and wishes
to compute the sample covariance matrix. This is obvi-
ously

1 X
S = — 3 xux¥f (3.11)
K =
S is the solution to the minimization problem
K
min Y IIS - x,x12 (3.12)

k=1

Clearly the larger x; have more influence in determining
the structure of S. Now consider the alternative minimiza-
tion problem

K
min Y, IIS — PliZw,
k=1

(3.13)

where the P, are rank-one projection matrices formed
from the data, i.e.,

X](,X§;X

P, = (3.14)

H
X, Xg

and the weights are given by the squared magnitudes of
the data, i.e.,
we = xix, (3.15)

The solution to this minimization problem is easily found
to be

1 K

S = Z Pka
K (3.16)
> we =
k'=1
and since
Pka = ka}];I (3.17)

we see that the solutions to the minimization problems
(3.12) and (3.13) are the same to within a scale factor.
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Now the process of forming an average of a set of
data vectors is equivalent to fitting those data vectors to a
single all-ones basis vector. In the averaging that we pro-
pose to carry out through the implementation of (3.10),
this concept is extended to the case where the fitting is
done to a larger number of basis vectors, the low-order
spherical harmonics.

The Hermitian matrices which are the output of this
fitting procedure, considered as a function of azimuth and
elevation, are denoted P(6, ¢).

3.4. Principal Component Analysis

Because the projection matrices in the previous sec-
tion were treated as elements of the vector space of Hermi-
tian matrices in the filtering operation, the results of the
filtering will be lifted off of the manifold CP". However,
under the assumption that the function P(e, 0) is already
smooth, the estimates P(8, ¢) should be close to CPY. It
remains to project each smoothed matrix back into CPV.
This is accomplished by standard principal component
techniques: at each (6, 0), we determine the nearest rank-
one matrix to P(0,4). This is Aupull] where Ay is the
largest eigenvalue of P and u, is the corresponding unit-
norm eigenvector. The resulting rank-one estimate of
P(8, 0) is denoted P,,,(8, 9).

3.5. Restoration of Free-Space Phase

After estimation of the multiplicative deviation
P(6,0), we restore the effect of the free-space phase
according to

P..(8,0) = P.,,(6,9)0[b(6, 9)bY(8,0)] . (3.6)

At this point, it is now appropriate to represent the array
manifold using a single N x1 vector to represent each
point in CP". One such choice would be to set a(8, )
equal to the unique vector in the range of P, (8, ) which
has unit norm and first element real.

4. SIMULATION EXAMPLE

The array calibration procedure described in the sec-
tion above was implemented on a synthetic data set chosen
to simulate a set of clutter returns for an airborne pulsed-
Doppler radar system employing an electronically scanned
circular array. The array parameters were chosen to mimic
the UESA array under development for the E-2C [4]. The
radar system used a carrier frequency of 450 MHz, a pulse
repetition frequency (PRF) of 300 Hz, and a coherent pro-
cessing interval (CPI) of 18 pulses. The aircraft was
assumed to be flying at an altitude of 9 km at a velocity of




50 m/s. Range gate spacing was set to 5 km, resulting in
78 non-ambiguous range gates out to the horizon being
processed for each pulse. The power in the clutter returns
was chosen make the clutter-to-noise ratio (CNR) equal to
30 dB at 100 km. In one resulting STAP data cube there
are 17 x 78 = 1326 vector clutter samples, corresponding to
a sampling of azimuth/elevation space covering the region
—60° < ¢ <+60° and 0° < 6 <60°. Because of the rela-
tionship between elevation and range, the sampling was
very dense near 6 =0 (i.e. out toward the horizon) and
somewhat sparse for elevations corresponding to close
ranges.

The perturbed array was simulated by taking the 20
elements in the 120° arc, and slightly perturbing their
locations and orientations in a random way. This is illus-
trated in Figure 4.1, shown here in black-and-white. The
inner product of the nominal and the perturbed array
response vectors (each normalized to unit norm) was in the
range 0.8-0.9 over most of (6, ¢) space.

Using the processing described above, a set of cali-
brated array response vectors was determined. The inner
product of the perturbed and calibrated array response vec-
tors was very close to 1.0 over the entire region of (0, ¢)
space covered by the sampling grid.

Perturbed Array (blue) vs. Ideal Array (red) spacing and pointing
T T T ™ T T T

Figure 4.1. Nominal and Perturbed Arrays

The result of the calibration procedure is illustrated
for one particular look direction, ¢ = 0°, 6 = 2°, in Figure
4.2. This shows the magnitude and phase of the array
response vectors at this look direction. The baseline, or
nominal, array response is the response determined from
element positions and nominal cosine element patterns.
The truth is the array response determined from the per-
turbed array. Finally, the calibrated array response is that
determined from the calibration procedure described here.

83

Magnitude Response at az=0,et=-2

o

N

0
T

I
N
T

voltage gain

124
o«
T

_— truth
_— calibrated 7
_— baseline

o
o
T

2

e
o
@

b

2 4 6 8 10 12 14 16 18 20
element

Phase Response at az=0,el=-2

phase gain
o
T
-

" ! L L L L L L
1} 2 4 8 8 10 12 14 16 18 20
element

Figure 4.2. Calibrated Array Response
5. CONCLUSION

The problem of estimating an array manifold from calibra-
tion data, or from a set of response vectors on a fixed grid,
was presented. It was argued that points in the array mani-
fold should be viewed as elements of complex projective
space, and in this context a technique for estimating
smooth functions from azimuth/elevation to complex pro-
jective space was proposed. The proposed technique com-
prises 5 steps: 1) free-space phase compensation, 2) com-
putation of a sequence of rank-one projections, 3)
weighted least-squares fitting of the projections using a
spherical harmonic basis, 4) principal component analysis
at each direction, and 5) restoration of free-space phase. A
simulation demonstrating the application of this technique
to an airbome circular array, with clutter returns used as
calibration data, was presented.
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ABSTRACT

Recent advances in linear amplifier and arbitrary
waveform generation technology have spawned interest in
adaptive transmitter systems as a means for both
optimizing target signal gain and enhancing ID. In this
paper, rigorous theoretical performance bounds are
constructively established for the joint transmitter-target-
channel-receiver optimization problem in the presence of
additive colored noise (ACN), (e.g, interference
multipath). For the ACN case, an analytical solution is
obtained as an eigenvector (with associated maximum
eigenvalue) of a homogeneous Fredholm integral equation
of the second type. The kernel function is Hermitian and is
obtained from the cascade of the target impulse response
with the ACN whitening filter.

The theoretical performance gains achievable over
conventional transmitter strategies (e.g., chirp) are
presented for various simulation scenarios including
interference multipath mitigation. Also discussed, is the
potential effectiveness of an optimal discriminating pulse
solution for the N-target ID problem that arises naturally
from the theory.

1. INTRODUCTION

A fundamental and ubiquitous design problem
encountered in radar, is that of jointly optimizing the
transmitter and receiver, given some knowledge of the
target and channel characteristics. At its most basic level,
one is concerned with judiciously selecting the operating
band, transmit waveform modulations, and receiver
processing strategy, in order to maximize the probability
of detecting the presence of a “target” while maintaining a
prescribed rate of false alarms [1] (or maximizing correct
classification for target ID applications).

In real-world applications, issues of cost,
complexity and reliability can often weigh heavily on the
design process. However, they are not static constraints.
As technology progresses, new design-space domains can
be explored, and previous assumptions revisited. For
example, recent advances in low-noise, high-power linear
amplifiers and high-speed, digitally programmable
arbitrary waveform generators, has allowed radar
designers to consider the use of sophisticated “pulse
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Polytechnic University
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Pillai@fire.poly.edu
considered

techniques heretofore

shaping” [2]-[6]
impractical.

A first generation of so-called “matched
illumination-reception” radars has been proposed based on
relaxing the “point target” assumption common to most
surveillance radars [2]-[5]. A point target, by definition,
has a flat response (and linear phase) across the
instantaneous operating band of the radar. Thus, under this
assumption, no attempt is made to “shape” (pre-
emphasize) the transmit pulse. However, given a priori
knowledge (deterministic or statistical) concerning the
range  extended (pon-point)  target scattering
characteristics, an optimal pulse shape can be designed
which maximizes the energy reflected off of a target [2]-
[5]. Specifically, for the finite pulse duration and receiver
integration case, it is obtained as the solution of a
homogeneous Fredholm integral equation of the second
kind whose kernel is formed from the impulse response of
the target [2], [8]-[9]. In the case of an interference
channel consisting only of additive white noise, this
transmit waveform, coupled with a linear filter receiver
“matched” to the shape of the “echo,” has been shown to
maximize the output SNR [2], [8]-[9]. A constrained
optimization procedure, in which deterministic waveform
constraints are specified, such as “pulse compression”
modulation, is contained in [7].

In this paper, rigorous theoretical performance bounds
are constructively established for the joint transmitter-
target-channel-receiver optimization problem in the
presence of additive colored noise (ACN), (eg.,
interference multipath). For the ACN case, an analytical
solution is obtained as an eigenvector (with associated
maximum eigenvalue) of a homogeneous Fredholm
integral equation of the second type (i.e., an eigensystem).
The kemel function is Hermitian and is obtained from the
cascade of the target impulse response with the ACN
whitening filter.  The theory is illustrated via its
application to both the interference multipath (colored
noise) and the N-target ID problems. In the later
application, a strategy for determining an optimal
discriminating pulse is derived and illustrated via a three-
target ID example.

Although generally nonlinear, an effective iterative
procedure has recently been obtained for the signal
dependent noise case (e.g., clutter reverberation channel)

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily
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[8]-[9]. Also in [10], the theory has been extended to the
multichannel case, which allows for the inclusion of
polarization and other physical degrees-of-freedom
(DOFs) in the transmit-receive chain.

Ay (2)

Target
Impulse
Response

s(?)

r(t)!

Transmit
Waveform

Recei’vedi
Signal :

ACN n(t) ~S,(®)

2. BASIC PROBLEM FORMULATION

Consider the basic elements of a radar design problem
(see Fig. 1). A transmitter produces a waveform s(t) that
interacts with a target whose impulse response is given by
hr(#). The resulting “echo” y(¢) is then corrupted by
additive, wide sense stationary (w.s.s.) colored noise
(ACN) n(t) with associated power spectrum S,(w), to
form the received signal r(¢). A “receiver” characterized
by an impulse response /,(f) then processes r(z) . Note
that linearity has been assumed in both the target
interaction and receiver. We will also defer to the final
section a discussion on how to address the case when the
target impulse response is not known exactly.

Our objective is to jointly optimize the choice of
transmit waveform s(f) and receiver response hp(?) to
maximize the output SINR at some prespecified sampling
instant #=7,, subject to finite pulse duration and
observation constraints. It is the explicit inclusion of these
constraints that has lead to a different solution than those
obtained in other investigations [3]-[5].

2.1 Solution

We proceed by first considering the structure of the
optimum receiver. It is a well-established fact that the
optimum receiver for a known signal embedded in w.s.s.

ACN, is a whitening filter 4, (r) followed by a matched
filter A4 () that is matched to the “whitened” target echo

Yw (t) = y(t) * by (t) , where * denotes the usual linear
convolution operator [1].

The corresponding optimum SINR is given by

86

E T, 2
SINR,p = =2 =L {ly, ()| dr (1)
oy

Whitening

Filter

where E, is the energy contained in the whitened target
w

echo y, () over the interval [T,-,T f], and oj is the
expected energy (variance) of the whitened ACN process.
Thus, to maximize the output SINR, it suffices to
maximize the energy in the whitened echo response
Yw (2), subject to a finite duration constraint on s(z), i.e.,
T, 2
max [ |y, (7| dr. )}
SO

The solution to (2) can be obtained by expressing
Yw(t) in terms of s(r), rearranging terms, and then
applying Schwarz’s inequality. Specifically, we have

T, LR 2
E,=[|yy@®)| dt= } }s(t)*h(z)] dt 3)
T ;
where
h(t) = hp () * hy (1), 4

ie., h(?)is the impulse response of the cascade of the

target impulse response with that of the whitening filter.
(3) can further be expressed as

Tf T T * *
E, = ; ((j;s(z'l)h(t—rl )drlj(({s (ry)h (¢ —rz)dz'zjdt
(5)

T T * *
= IS(TI)IS (z)K (71,7)dr,dr,
0 0

where the superscript * denotes complex conjugation.
Note that we have required that the transmit pulse be of
finite duration (e, s()e[0,7]). K'(r,7,)is the
conjugate of the generally positive definite Hermitian
kernel function K(r,,r,) given by
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Fig. 2 Normalized interference power spectrum with
and without multipath.

T
K(z,m) = | B (=o)he~7y)dt ©)
T

Applying Schwarz’s inequality to (5) yields the
optimum choice s, (#) for transmit waveform, namely,

T
ﬂ'maxsopt ()= .[sopt (z2)K(7,7,)d7, Q)
0

ie, s(f) must be an eigenfunction (with maximum
associated eigenvalue) of a homogeneous Fredholm
integral equation of the second kind [11] with kernel given
by (6). The corresponding optimum receive filter is thus
given by

hg(#) = hp(2) * by (£) * 50 () (8)

Note that the existence of a causal whitening filter Ay, (¢)
is guaranteed due to the w.s.s. assumption of the ACN [1].
Also, substitution of the solution to (7) into (1), yields the
optimum SINR (and thus the upper bound for any
similarly constrained pulse).

2.2 Application to Interference Multipath

An interesting and potentially useful application of the
present formulation is the so-called colored noise problem,
which in a tactical radar setting may take the form of in-
band RFI [6] or interference multipath [12]. In these
situations, it is possible to “tailor” a transmit waveform to
“anti-match” to the interference power spectrum. Thus
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achieving an SINR gain over conventional waveforms

(e.g., chirp).
15 T
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Fig. 3 Waveform spectra for the optimum pulse and
chirp with multipath spectrum superimposed.

For simplicity, the usual “point target” assumption
will be employed for the target since our objective is to
illustrate interference rejection. Of course if available,
target information is easily included via (4) and (8).

Consider the colored noise interference power
spectrum of Fig. 2, which results from passing a
broadband (white noise) source through a multipath
channel with impulse response

hyp @) =6()+.96(-2)+.5*5(t~5)+.2*5(~10),(9)

which consists of a direct path, and three discrete
multipath delays at 2, 5, and 10 range resolution cells.

Fig. 3 displays the spectra of a chirp waveform with a
time-bandwidth product (“47”) of 100 along with that of
the optimum transmit waveform s, () obtained from (7).

The resulting SINR gain over a conventional chirp is 9.6
dB, which is due to both the increase in SINR at the input
to the receiver (8.6 dB), as well as the mismatch loss of the
chirp receiver (1.0 dB).

It is important to note that the above attenuation of the
interference is for all look directions. It is not based on
spatial nulling. This can be a significant advantage for
small antenna arrays (relative to the operating
wavelength), since it has the effect of “tightening” up the
interference notch and reducing channel match
requirements.

Although the above example was based on the
availability of ideal power spectra, one can envision a
practical application in which the radar passively “sniffs”
the operating band (receive-only) to estimate the
interference spectrum.
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Fig. 4 Function space for received signal under two
different target hypotheses.

thereby reducing SINR. An example of such a constrained
solution methodology is contained in [6]-[7].

2.3 Application to Target ID

A perhaps more far reaching application of the
optimized transmit-receive optimization theory, is to the
target ID problem. Formulated as a classical hypothesis
testing problem in the presence of additive Gaussian noise,
our objective will be to choose a transmit strategy that will
maximize the L, norm distance between signals
corresponding to different targets. The corresponding
optimal receive strategy follows from the classical theory
[1]. Some earlier work in this area for the two target case
can be found in [13]-[14].

Consider the two-target ID problem framed as a
classical binary hypothesis-testing problem, i.e.,

HrO= O =h @O+
Hy :r(t)= y, () + n(0) = by (t) # s(0) + n(t)

where £, (¢) and %, (¢) denote the impulse responses of the
two targets, respectively.

For the additive (signal independent) noise case, with
a unimodal and symmetric probability density function
(pdf) and equally likely prior probabilities, the received
signal under the two hypotheses can be viewed as two
“points” in a function space surrounded by equiprobable
“spheres of uncertainty” (see Fig. 4).
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From Fig. 4, it is immediately apparent that our
objective in designing an optimal transmit waveform is to
maximize the separation (in function space) between the
two hypotheses. This will insure that for the stated pdf
assumptions, the “overlap” will be minimized [16].
Formally, we have

2 2

Ty Ty
max [|y )=y, (1) dr=max [|y(0) dr,  (11)
(1) T, s(1) 7,

where y(¢) = y,(t)- y,(f) . Interestingly, the solution to
(11)_1s the same as that for (2) with 4(s)in (4) replaced
with A, ()~ 5, (¢).

The extension of the above to the N-target ID problem
is relatively straightforward [16]. The objective is to
maximize the average (weighted average in general)

separation between hypotheses. The solution has the form
[16]

T
ﬂ'maxsop! (TI) = jsopt (TZ)K(TlaTZ )dTZ (]2)
0

where

N

2 T, '
K(t,1,)=% Wi fhm’n(t-—’[] Y, (t=75)dt (13)
m,n T;

and
hm,n(t)zhm(t)_hn(t)' (14)

In (14), A, (t)and A, () denote the impulse responses
between m-th and n-th target pairs. {wm,n} are weighting

factors that allow for (amongst other things) the assignment
of relative “importance” in separating different pairs (e.g.,
military versus civilian). Note that the self-pairings (m=n)
naturally drop out of (14).

To illustrate the impact that optimally “tailored”
waveforms can have on the target discrimination problem,
consider the three impulse responses of Fig. 5. The chirp
waveform of Fig. 6 (a) was compared with an optimal
waveform obtained from (12) subject to the same finite
pulse duration/integration and transmit energy constraints
(see Fig 6(b)). The optimum receive structure consisted of
a bank of three matched filters, each matched to a different
target assumption.

A Monte Carlo simulation, consisting of a thousand
independent trials, was conducted in which additive
Gaussian white noise (AGWN) was introduced to produce
a 0 dB SNR before matched filtering. The sample
probability for correct classification for the optimum pulse
was 99.99% (one error per thousand), compared to a
relatively low 58.40% for the chirp.




probability for correct classification for the optimum pulse
was 99.99% (one error per thousand), compared to a
relatively low 58.40% for the chirp.

constrained optimizations that lead to, for example, phase-
only modulation schemes.
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Fig. 5 Three target signatures employed in simulation.

The above N-target ID problem also inherently
provides an approach for addressing the problem of
specifying the target signatures (used in the optimization)
as well. For example, if the aspect angle of the target is not
precisely known, and this degree of uncertainty can lead to
non-negligible mismatch errors, then several different
aspects can be hypothesized and a structure identical to the
above ID example can be employed. Other hypotheses
could also be included relating to different target
configurations (e.g., extra payloads) or deployments (e.g.,
camouflage).

3. CONCLUSIONS AND AREAS FOR
FUTURE INVESTIGATION

A formal theory for jointly optimizing the transmit
waveform and receiver filter was presented for the additive
colored noise case. The methodology was applied to
colored noise problems arising from, for example,
interference multipath. When applied to a simple multipath
channel example, a gain of 9.6dB was realized over a
conventional chirp.

A theory for N-target ID was introduced and
illustrated with a three “target” ID problem. The resulting
probability of correct classification was dramatically better
than that achieved by a conventional chirp.

The extension to the generally nonlinear clutter
(signal dependent noise) case can be found in {8]-[9]. In
[16], a more complete derivation of the N-target ID
problem can be found. An extension to the multichannel
case (e.g., polarization) can be found in [10].

Some important areas for future investigation include
applications to more realistic targets and noise
environments, and extensions of the theory such as
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ABSTRACT

We derive fast wideband algorithms for determining the bear-
ing and 3-D position of a target using a distributed array of
acoustic vector sensors (AVS’) situated on a reflecting bound-
ary. Each AVS locally estimates the bearing from its location
to the target using a rapid wideband estimator we develop based
on the acoustic intensity vector; adaptations of beamforming-
based bearing estimators are also discussed. The local bear-
ing estimates are then transmitted to a central processor where
they are combined to determine the 3-D position. Closed-form
weighted least-squares (WLS) and reweighted least-squares al-
gorithms are proposed to achieve this. We also present a bound
on the mean-square angular error of the local bearing estimates
and use it along with the data to adaptively determine the weights
for the WLS routine. The results are relevant to the localiza-
tion of underwater and battlefield sources using seabed sensors
and ground sensors respectively. Numerical simulations are pre-
sented for both scenarios.

1. INTRODUCTION

Acoustic emissions from battlefield or underwater sources can pro-
vide an invaluable signature by which to detect, locate, and track
hostile units. The passivity of an acoustic surveillance system al-
lows it to monitor the battlefield or ocean without giving away its
own presence. Passive acoustic surveillance has long been used
underwater but its battlefield application {1] is more recent. The
feasibility of acoustic localization and tracking on the battlefield
[2]-[5] has been demonstrated.

We propose using acoustic vector sensors (AVS’s) located on the
ground or the seabed, to perform the surveillance function. These
sensors measure the (scalar) acoustic pressure and all three compo-
nents of the acoustic particle velocity vector at a given point, and
possess a number of advantages over arrays of pressure sensors
[6]-[9]. The ability of a single AVS to rapidly determine the bear-
ing of a wideband makes them especially attractive for the present
problem. Vector sensors for underwater applications have already
been constructed [10], [11], and sea-tested [12], [13]. Recently, a
new aero-acoustic velocity sensor called the Microflown [17], [18]

This work was supported by the Air Force Office of Scientific Re-
search under Grants F49620-99-1-0067 and F49620-00-1-0083, and the
National Science Foundation under Grant MIP-9615590.
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has become commercially available, from Microflown Technolo-
gies, B.V. [16] in the Netherlands, that would be appropriate for the
battlefield context. As the probe is micro-machined a lightweight
portable AVS could be constructed. The use of vector sensors near
a boundary has been analyzed in [9], and they have been tested on
amock vessel hull [14] and at the seabed [15].

In this paper we develop fast wideband algorithms for finding the
bearing of an acoustic source using a single AVS on the ground
or seabed, and for combining bearing estimates from several ar-
bitrary locations to determine its 3-D position. The bearing esti-
mate is based on the measured acoustic intensity vector. We derive
an optimal bound on its mean-square angular error (MSAE) [20],
[21], and use it to obtain a data-based measure of the bearing es-
timator’s accuracy. Each AVS transmits its bearing estimate, the
estimate of its variability, and its current location, to a central pro-
cessor (CP), which uses them to determine 3-D position. We pro-
pose a weighted least-squares (WLS) method to estimate position
using the variability measures supplied by the sensors as weights.
We also develop a re-weighted least-squares (RWLS) algorithm,
to account for the different ranges of the sensors from the target.
Note that these 3-D position estimation algorithms are independent
of how the bearing estimates are obtained; they could come from
subarrays of pressure sensors or other direction finders (passive or
active).

As each AVS transmits only a bearing estimate rather than all mea-
surements to the CP, this is a decentralized processing scheme
[19]. The resulting 3-D position estimator is suboptimal because
it does not make use of correlations between different locations,
but it has numerous advantages: sensor placement is arbitrary and
need not be fixed so sensors can be dropped (from the air or sea
surface) and may be used in a dynamic context, carried by battle-
field units for example; each sensor provides local target bearing
information (especially valuable in the dynamic context), without
the need to communicate with the CP. Even when communication
is made, minimal data is sent, so minimizing the risk of detection
and telemetry requirements; lastly, the algorithms are wideband
and very computationally efficient as they require no numerical
optimization.

In Section 2 we present the mathematical model for the sensor
measurements. Section 3 develops the bearing estimation algo-




rithms, derives the performance bound and presents the procedure
to adaptively estimate the variability. The WLS and RWLS 3-D
position estimates are constructed in Section 4 and Section 5 pro-
vides numerical examples. Section 6 concludes.

2. MEASUREMENT MODEL

Assume there is a single source, located above a flat planar bound-
ary, radiating spherical waves and that has bearing u relative to
an AVS located on the surface, which defines the z, y-plane. As
long as the source is not too close to the boundary, the acoustic
field may be obtained using a ray acoustics approximation, i.e. us-
ing an image source with bearing wim obtained by negating the
z-component of u. Let $(t) be the source signal’s complex enve-
lope referenced to the sensor’s location. The image source’s signal
is then R (t), where the complex-valued R is to be determined.
As long as the sensor is more than a few wavelengths from the
source, the velocity in a spherical wave is proportional to pressure
(see e.g. [23]) and in the radial direction. Summing the original
and image source contributions, the pressure and velocity fields at
the sensor are

p(t) = (1 + R)p(t)

v(t) = —ﬁ(u + Raim)(t),

@2.1)
2.2)

where po is the density and c is the speed of sound. The presence
of the boundary imposes the condition —p(t) /v, (t) = Zin at z =
0 [23], where v.(t) is the z-component of v(t), and Zi, is the
specific acoustic impedance of the surface. Therefore

(1 4+ R)poc

20 = A Rysmg’

(2.3

where 9 is the source’s elevation with respect to the sensor, and

Zin — i
= Zin— poc/siny (2.4)
Zin + poc/ sinp
The quantity R is known as the reflection coefficient. In general
Zin, and hence R, depend on frequency as well as 1), however,
this model assumes they are approximately constant over the band-
width.

The AVS’s measurement vector may therefore be written

y(t) 2 [y”(t)} =hp(t)+e(t) t=1,2,..., (25

v, ()

where y, (t) is the pressure measurement, v, () contains the three
orthogonal velocity measurements normalized by —1/poc, e(t)
represents noise, and the steering vector h is given by

1+R
(14 R) cos ¢ cos
(1+R)singcosy | °
(1-R)siny

h = (2.6)

where ¢ is the source’s azimuth relative to the sensor. Expression
(2.6) assumes the three velocity components are aligned with the
coordinate axes, or that the data have been rotated to achieve this.

2.1. Statistical Assumptions

We assume that the signal and noise processes 5(t) and e(t) are
zero-mean uncorrelated processes with finite second order mo-
ments and that

E{p(t)5(r)} = o26:.. 2.7
E{e(t)e(r)"} = ¢*16, ., (2.8)

where &, is the Kronecker delta function, I is the identity ma-
trix, overbar indicates conjugation, and superscript ¥ represents
conjugate transposition.

2.2. Multiple Sensors

Now suppose there are m sensors located at 71, . . . , T'm, and de-
note the 3-D source position vector by 6. Letting 5(t) be the
source signal reference to the origin, the measurements from the
array are

9] .
Uil = ) (- m/e) 4 eslt), @9)
fori=1,...,m, t =1,2,..., N, where the u; are the sensor

to source bearing vectors, 7; is the differential time delay with re-
spect to the origin, and «; accounts for the effect of Doppler. The
estimation schemes presented make no use of correlations between
sensors at different locations, so expressions for the Doppler and
time delay in terms of source position and velocity are not impor-
tant (except for the purposes of simulation). For the same reason,
we do not need to make any assumptions regarding noise correla-
tion between sensors at different locations. Note that for a moving
source, u;, &, 7;, and a;, will generally vary with time, however,
we assume that the observation interval is short enough such that
they are approximately constant.

3. LOCAL BEARING ESTIMATION

In this section we derive fast wideband algorithms to estimate
with a single AVS. Acoustic intensity is a vector quantity defined
as the product of pressure and velocity. Since the z and y compo-
nents of the intensity vector are the same for both real and image
sources, the horizontal component of acoustic intensity is parallel
to the projection of 2 onto the z, y-plane. Therefore we can use an
estimate of the horizontal acoustic intensity to determine azimuth.
Note that [6] used this technique to derive an estimator for the full
bearing vector using an AVS in free space, however, it cannot be
used to find the elevation when the boundary is present.

The measured horizontal component of acoustic intensity is

& Fo (t)]
I.(t) =y, (1) |2 . 3.10
h( ) Yn( ) [yvy (t) ( )
Thus, under the noise model of equation (2.8),
E{L.(t)} = 0|1 + R|* cos ¢ {gj’jd)] @3.11)

Since this is purely real we let § = N~! SN Re{l, (t)}, and
by the strong law of large numbers § — E{I.(t)}. Thus we can
estimate azimuth from

ﬁhé[cos{)] =i—>u a [cosqﬁ]

sind| ~ T3] sin ¢ G.12)
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Equation (3.12) is independent of R, so this estimator can deter-
mine the azimuth without knowledge of the ground or seabed’s
reflective characteristics. Since the magnitude of the horizontal
component of acoustic intensity depends strongly on the elevation,
so will the accuracy of this azimuthal estimator. By adapting the
analysis of [6] to the present scenario, we can show that its asymp-
totic MSAE is

LA . 1+ 1+ RI?
MSAE() = lim NE(¢—¢)" = mﬁf‘a

(3.13)
where p = o2 /o? is the signal-to-noise ratio (SNR).
Obtaining an estimator of the elevation requires that the functional
form of R be known. The vertical component of acoustic intensity
L(t) = yp(t)To, (t) has expected value
E{L.(t)} = 02(1 + R)(1 — R)siny. (3.14)
Using equation (3.11) we see that

s EB{L®)} _1-R i
X=TREoN - 1+R ™ ¥, (3.15)

is a function of +) alone, which we estimate from the statistic

N
I(t
X = Az,:ml ®) . (3.16)
12261 Re{In(®)}]
The elevation estimate 1,; is then the solution to
X = L= RO 0 P. (3.17)
1+ R(¥Y)

3.1. Battlefield Scenario
For this scenario, the boundary is modeled as a locally reacting
surface, i.e Zi, is independent of 3. This model is been shown to
be a good approximation to various ground surfaces [26]. Substi-
tuting (2.4) into (3.15) we obtain x = poc/(Zincostp). Hence,
the elevation can be estimated from

2 -1 PoC

P = Re {cos Zn

}. (3.18)

3.2. Seabed Scenario

Here we model the seabed as the interface between two liquid lay-
ers, one of which is absorptive; this corresponds approximately to
a water-packed sandy bottom [24, pp. 11]. The model is

nsiny — j(cos?yp — n?)}/?

nsin ¥ + j(cos?yh — n2)1/2’
where 7 is the ratio of sand density to water density and n is the
index of refraction. Absorption is accounted for by assuming the
index of refraction is complex, i.e. n = no(1 + i), with & > 0.

For the sandy ocean bottom typical values are ng = 0.83,n =
2.7, = 0.1 [24, pp. 11]. Substituting (3.19) into (3.15) gives

—jeos’p —n? (3.20)

R(y) =

(3.19)

X= 7 €OS 1 ’
and so we estimate 1 using
) = Re{ cos™" LA (3.21
emforrl 2 e
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3.3. Beamforming Estimators

The intensity based estimators outlined above are only effective
when there is one dominant source, however, an AVS can iden-
tify up to 2 sources [25]. To deal with multiple source situa-
tions and to obtain more accurate bearing estimators, we consider
the following adaptations of conventional and minimum variance
beamforming-based estimators:

L. = argmax {h"f?,h/|h|2} (3.22)
U

fhemy = aTgmax {|h|2 /(h”}‘z—lh)} , (3.23)
u

where R is the sample covariance matrix. The vector h is inde-
pendent of frequency because all four AVS components are co-
located, so unlike traditional pressure-array beamforming estima-
tors, these are wideband estimators. However, its magnitude de-
pends on the the angle, thus the presence of the normalizing fac-
tor |k|? to partially compensate for this. Nevertheless, these esti-
mators will not have the same statistical properties as their usual
counterparts. Of course a 2-D numerical search is required so they
are not as fast as the intensity algorithms, which could be used to
initialize the search.

3.4. Estimator Performance

In general, there is no simple expression for the MSAE of the
intensity-based estimator of the complete bearing u. Instead we
use a bound on the MSAE [20], [21], given by

MSAE, (u) = N{cos’ CRB(¢) + CRB(¥)}, (3.24)

where CRB(+) indicates the Cramér-Rao bound (CRB), that holds
for a large class of estimators [21]. If the signals and noise are
Gaussian it is given by [27]

1 1 cos?ep
MSAE, = — {1+ > ( +
"2 ( plik|1> /) \l|oh/04]|

1
. (325
uah/azpu2—|<ah"/a¢>h|2/nhn2) G2
where
HRI? = |1+ R|?(1 + cos’¥) + |1 — R|*sin®y  (3.26)
2
”‘Z_Z = |1+ R|? cos’y (3.27)
on|? 2 . 2 2 2 "2
H% = |1+ R|sinyY + |1 — R|" cos™p +2|R|
—4Re{R'} cos¢sin¢ (3.28)
H |2
lg% k| =|R'{(1+R)1+cos’y) — (1 - R)sin’*y}

+ (1 =R =1+ RI*) cosysin |’ (3.29)
and R’ is the derivative R with respect to ).

It may be seen that MSAE,, is a function of the SNR p and the ele-
vation 1), but not the azimuth. Therefore we must estimate MSAE,
by plugging in estimates p and 1) The bearing estimator itself al-
ready provides us with and estimate of 1 so its remains to estimate
p- If we knew the maximum-likelihood (ML) estimate of u, say
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Figure 1: Battlefield scenario: Performance, MSAE/2, of fast
bearing estimator (solid), and bound MSAE./? (dashed), for 20dB
source with 350 snapshots. Also shown is mean estimated bound

@bl/z (dash-dotted) plus and minus three empirical standard
deviations (dotted). 500 realizations were used.

U, then we could use closed form expressions, see e.g. [22], to
find the ML estimates of 62 and 62 (assuming Gaussian signals
and noise). Since we don’t know iy, we shall use our actual
estimate of 4. Therefore we have

2_1 _RRTN 4
5% =3Re {tr [(I ;|r1[[2> R]} (3.30)

-2 1 ~H A A2 ~
= —h"[R-5°1)h, (3.31)
IR

s

where b = h(@) and R is the sample covariance matrix. So our
estimate of the SNR is 5 = &2/62%. This scheme avoids a sin-
gular value decomposition of the sample covariance so keeping
processing requirements to a minimum. Finally, we plug 5 and
the elevation estimate ) into (3.25) to obtain I\EA\E.,. Note that
this means of assessing variability is appropriate for any bearing
estimator not just those discussed above.

4. CENTRALIZED POSITION ESTIMATION

If all the @; were without error the collection of m lines pass-
ing through each r; with direction 4; would intersect at the true
source position. Therefore, we shall choose @ to be the point that
minimizes a weighted sum of the minimum squared distances to
cach line. The result is a closed-form estimator. Any point along
the line defined by the ith sensor’s location and bearing estimate
is described by ; + pdi; for some y;. For fixed @ the point of
closest approach occurs when p; = 4] (0 — r;), i.e. p; is the
projection of the vector from =; to 6 onto the direction ;. Thus,
the weighted least squares (WLS) estimate of @ is

™m
0= argmin Y _ ||ri + @l (6 — 7 i — 6] ws, 4.32)

=1
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Figure 2: Underwater scenario: Performance, MSAE!/?, of fast
bearing estimator (solid), and bound MSAE},/ 2 (dashed), for 3dB
source with 175 snapshots. Also shown is mean estimated bound

MSAE, /" (dash-dotted) plus and minus three empirical standard
deviations (dotted). 500 realizations were used.

where the w; is the weight corresponding to ;. Equation (4.32)
has the closed-form solution

m -1
6= [(Z wi) I- UWUT] Aw, (4.33)

i=1

where w = [wi,... ,wn]", W = diag{w},U = [it1, - - , itm),

and

A

[(I—mal)r,...,(I — am@n)rm] . (4.34)

Weights should reflect the accuracy of each individual bearing es-
timate. Therefore it is natural to use 1 / I\EA\Eb, where @b is
the variability estimated by the procedure in Section 3.4. Note
that it does not matter how the bearing estimates are obtained.
For example each AVS could replaced by a small subarray of hy-
drophones.

4.1. Reweighting

Errors in the bearing estimates from sensors far from the source
have a much greater effect upon & than those from sensors nearby.
The contribution of the ith bearing estimate to the squared error
criterion is approximately 1262, where I; is the distance of the
source from the ith sensor and §; is the angular error of ;. Al-
though we do not know the I;, we do have an estimate of them after
we have estimated @ using the above WLS procedure. Therefore
we propose a re-weighted least-squares (RWLS) estimator con-
structed as follows: Find 6 using the weights w; = 1 /MSXET(ui )
Using this @, estimate the distances from each sensor to the source
asl; = |6 —r; [|, then construct a re-weighted estimate 85, again

using WLS but now with weights w; = 1/(? - MSE'Eb\(ui)).




5. NUMERICAL EXAMPLES

5.1. Local Bearing Estimation

For the purposes of simulation we use a Gaussian distributed signal
and noise. For the battlefield problem we take Zia/(poc) = 11 +
137, which was measured by [26] for grass-covered fiat ground at
215Hz, and use a 20dB source with 350 snapshots. For the un-
derwater case we use the parameters given in Section 3.2, a 3dB,
source and 175 snapshots. Figures 1 and 2 summarize the results,
which are independent of azimuth, as a function of incidence angle
7, say (i.e. v = w/2 — v). In both cases 4 is close to the bound
at normal incidence (source directly above sensor). As incidence
increases the performance, though not the bound, worsens steadily
for the battlefield scenario. For the underwater case performance
stays approximately constant and close to the bound before wors-
ening rapidly around 55°, at the same time as the bound actually
decreases. In both cases, performance and bound tend to co as the
incidence reaches grazing, because |h| — 0, and therefore so does
the SNR. Of course, the underwater estimator is generally rather
more accurate than the battlefield estimator across the board (we
are using a higher SNR and more snapshots for the latter). Ex-
amination of the standard deviation of the elevation and azimuthal
estimates separately (not shown), reveals that the majority of the
angular error, especially in the battlefield scenario, is due to errors
in the elevation rather than the azimuth. Thus, the 3-D location
system can determine the z, y-coordinates (ground track) of a tar-
get can be rather more accurately than its 3-D position or height

Except at large incidence, the quantity MSAE/T(u)) is seen to es-
timate MSAE, (u) well. This is especially true for the battlefield
problem, and is probably due to the higher SNR in the simulation.
It is possible that on any run 1/3 = 0, with finite probability if the
argument of the inverse cosine in (3.18) is greater than one. In
this case our technique fails to yield an estimate of MSAE,, be-
cause it is theoretically infinite if 1) really is zero as |h| = 0. In
our simulation, this never occurred below 66° incidence, and the
chances of it occurring rose to about 50% within a few degrees
of grazing incidence. However, we do not expect that such large
incidences will need to be measured in this application and so this
should not be a problem in practice. If it does occur at one sensor
in the array, a solution would be to use the average of the MSAE,
obtained from the other sensors as its weight in the WLS location
procedure.

5.2. Centralized Position Estimation

In these examples there are six sensors located on the boundary at
(0,0), (20,26.6), (40,38.1), (60, —21.3), (—100, —32.0), and
(70,40.4), and a wideband source at (15,13.4,100) (in units of
meters). These locations are chosen such that if the sampling fre-
quency is equal to the speed of sound (330mys for air, 1500 m/s for
water) all differential delays are multiples of the sampling period.
We use a Gaussian signal and noise and assume they are indepen-
dent and identically distributed (i.i.d) after sampling. This will
be the case if the bandwidth prior to demodulation is equal to the
sampling frequency and the spectral density is symmetric about
the center frequency, e.g. bandlimited white noise. For example,
in air, a 50-380Hz signal downsampled around 215Hz and sampled
at 330Hz, and in water, a 100-1600Hz signal downsampled around
850Hz and sampled at 1500HZ would give rise to these statistics.
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Figure 3: Angular estimation performance in terms of MSAE'/?
for the WLS (solid), RWLS (dashed), and unweighted LS (dash
dotted) 3-D position estimators. Upper 3 curves are for battlefield
scenario, lower 3 for underwater. The scenario is described in the
text.

Signal level at each sensor is determined by spherical spreading
but Doppler not included; noise power and reflection properties
are the same at each sensor.

Figures 3 and 4 show the MSAE and mean-square range error
(MSRE), defined by E(||8]] — ||6]])?, of the position estimated for
both the basic WLS estimator and the reweighted estimator, versus
SNR (defined as the ratio of signal power on the ground directly
below the source when the boundary is not present to the noise
power at each sensor). A total of 350 snapshots were used with 560
realizations. Unsurprisingly, both MSAE and MSRE decrease as
SNR increases, however, the estimated bearing is rather more ac-
curate than the estimated range. It is known that the CRB on range
for a passive sensor array increases as the fourth power of the range
[28], so this observation seems quite consistent. The underwater
problem results in the more accurate source position estimate. The
WLS method improves considerably on unweighted least-squares,
showing the value of transmitting the variability measure to the CP.
The re-weighting scheme is seen to provide a small but noticeable
improvement over WLS.

6. CONCLUSION

We developed a fast, wideband decentralized processing scheme
for local bearing estimation and global 3-D source localization of
a target using a distributed array of acoustic vector sensors on the
battlefield or the seabed. The algorithm requires minimal commu-
nication between each sensor and the base so reducing the likeli-
hood of detection in a hostile environment.
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ABSTRACT

This paper concerns the use of complex multipath propa-
gation for discriminating target depth with a low-frequency
active sonar. Although matched-field processing techniques,
which exploit full-wave modeling of multipath propagation,
have been demonstrated in passive sonar applications, their
practical application has been precluded by uncertainty in
modeling the complex amplitudes of rays or modes, which is
exacerbated in active sonar by the unknown complex back-
scattering characteristics of the target. In this paper, a space-
time matched-field technique is proposed which avoids the
need to model complex ray/mode amplitudes and instead
exploits changes in the complex target return seen between
consecutive sonar pings at a horizontal array to discrimi-
nate target depth. Results with simulated and real data in-
dicate target depth determination to within 10 percent of the
ocean bathymetry can be achieved even in a highly range-
dependent environment.

1. INTRODUCTION

Despite many experimental demonstrations of range-depth
matched-field processing (MFP) for passive sonar, its prac-
tical application has largely been precluded by the difficulty
of accurately modeling the relative complex amplitudes of
modes or rays from a set of hypothesized source locations.
In active sonar, uncertainty of the complex target scattering
function also contributes to this problem. In this paper, in
an extension of an approach to matched-field altitude esti-
mation for OTH radar, a multi-ping method is developed for
matched-field depth estimation (MFDE) which avoids the
need to model complex ray/mode amplitudes on individ-
ual pings and instead models the changes in the coherent,
but unresolved, multipath target returns from ping-to-ping
[1]. In particular, the pattern of rapid shape changes due to

Supported by ONR 321US under Contract N00014-99-1-0080. The
authors would like to thank Jim Alsup of SPAWAR-SSC San Diego for his
helpful suggestions and for providing the transponder data.
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target motion, which is seen in figure (1) as fading of the
complex space-time active return, is strongly dependent on
target depth. Using a ray trace multipath propagation model
to predict rapid fading, and first-order Markov modeling to
handle slow fluctuations due to target aspect changes and
medium fluctuations, a maximum likelihood (ML) estimate
of target depth is developed here. The ML estimator in-
volves a generalized correlation of space-time data vectors
from consecutive sonar pings, where the multipath propaga-
tion model is used to compensate for target depth-dependent
changes of the return between pings.

2. MODELING MULTIPATH ACTIVE SONAR
RETURNS

Consider a horizontal linear hydrophone array receiving re-
turns scattered off a target and surface boundaries in the
presence of additive noise. For the k*" ping the signal re-
turned to the receiver array may be decomposed into its
component bistatic eigenray paths. The [** such component
of the sonar return will have a time delay 7; ;. and a Doppler
shift w; . Both of these quantities are also functions of tar-
get depth, z, and target range, r,. Given a frequency in-
dex n, and Doppler index m, denote the filtered temporal
spectrum waveform for the I** component by fi. (wn — wi k)
and the beamformed complex spatial spectrum waveform
by gk (Km — k1,x). The model for the complex frequency-
wavenumber return (in the absence of reverberation) is then

zln,m, k|

M
= &% s fr(wn — W) gk(Rm — KE)
m=1

+n[n, m, k] 1)

where s, 5, is the complex amplitude weighting of the /A
multipath ray, 6%, is the unknown phase path, and [n, m, k]
is additive white noise.

Since the target return is concentrated within a small
neighborhood in the frequency-wavenumber domain, only




the data in the vicinity of the transmitted signal center fre-
quency and arrival wavenumber is essential. Therefore, the
N M x1 vector x can be used to represent an N x M block
of the complex frequency-wavenumber return in this neigh-
borhood. The data model given by equation (1) can then be
written as

Xp = e’k Hisy +n; 2)

where

Hi)nNami = fe(wn —wie)gk(km — k1) (3)

Equations (1) and (2) neglect reverberation, but reverbera-
tion may be included by assuming that the transmitted sig-
nal is also scattered to the receiver by uncorrelated patches
on the ocean floor with the same time delay as the target.
Thus, including reverberation terms yields the data model

P
Xp = 70 Hgs; + Zejop‘ka,kgp,k + ny C)]
p=1

The complex multipath ray amplitudes are assumed to be
zero mean Gaussian random vectors with diagonal covari-
ance matrices

As = E[sgsH] )

and
Agp = Elgy xg,] (6)

The additive noise is also assumed to be zero mean Gaussian
with NM x N M covariance matrix o*I,,. The pdf p(x;|z)
then describes a zero mean Gaussian random vector with
covariance matrix

P
Ry = HiAHY + Y HpuAHE, + %1, (7)

p=1

The objective is to estimate (from a sequence of pings, Xk)
the depth, z, which appears in equation (4) via Hj,.

3. MAXIMUM LIKELIHOOD DEPTH
ESTIMATION WITH MULTIPLE PINGS

To achieve a ML estimate of target depth that uses multiple
pings, it is necessary to calculate the joint distribution of the
data snapshots conditioned on the target depth. Denote the
data snapshots for K + 1 pings (k = 0,---, K ) by the com-
posite vector X i, and likewise denote the collected phase
path differences by the vector A@x = (Ab;,---,Abk),
where Afy = 6 — 6;_;. Neglecting aspect dependent
target backscatter characteristics, assume the complex mul-
tipath ray amplitudes are correlated from one ping to the
next, so that E [s xSi_1] = A,. Slow random fluctuations
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are handled here by modeling s;. as a first-order Markov
process, in which case the joint pdf can be rewritten as

K

P(Xklz, AOk) = p(xo|2) [] p(xklxi-1, A8k, 2). (8)
k=1

Thus, the joint pdf on X ¢ (conditioned by z and A® k) can
be expressed as a product of terms, each of which describes
the change in the received signal from the k — 1%t ping to
the kth.

An ML estimate of the target depth can now be calcu-
lated by maximizing p(X x|z, A@g) over A@g and z.
Since consecutive multipath amplitudes s;_; and s; are
both zero-mean Gaussian and jointly Gaussian, it then fol-
lows that p(xy|xx—1, Ak, 2) is also Gaussian with mean
and covariance defined as

m; = TkR;_llxk_l (9)
Q = Rk—TkR;—l-lTkH

where T, = H, A, H  e2% [2]. Maximization of the
log-likelihood in equation (8) over A®;, yields

K
L(z) = logp(xolz) + Y _ Li(2) (10)

k=1

where Li(z) = maxag, log p(xk|xk—1, 2, Ab}), which,
from equation (9), can be written
Li(z) = -logz"|Qy| - xfQ;'x,

A8  H ()~1
-f-2r£1123ic(eJ *xp Qp Prxi_;)

H HpA-—1
—Xp_1 Pk Qk kak—l

where P, = T kR;fl . The maximization in this expression
can be performed explicitly by requiring the phasor e#4%* to
rotate the complex quantity x{7 Q' P, x, _, into a positive,
real quantity. Therefore, log-likelihood term can be written
as

Li(2) = -logn"|Q.|—xFQ;'x, (11)
+2|X?Q;1kak——1| - ka—1PkHQ;1P1¢xk-1

The ML estimate of target depth can be calculated by a one-
dimensional numerical maximization of the cumulative sum
in equation (10) with respect to the depth, z.

One final adjustment to the estimator is necessary: for
each hypothesized depth, each matrix Hy must be normal-
ized by Zle HyA;Hi? to insure that the hypothesized
total energy scattered to the receiver from the target is a con-
stant function of depth.



4. SIMULATION AND REAL DATA RESULTS

In order to evaluate the performance of the ML depth es-
timation approach presented here, histograms of the depth
estimates are computed over 100 Monte Carlo runs as a
function of SNR and target depth. The environment, sum-
marized in figure (2), was from the Bravo run of the Shal-
low Water Active Classification sea trial number 3 (SWAC-
3), a NATO event conducted in November 1995 near the
Mediterranean coast of Spain. The received signal was from
a transponder on a moving underwater platform, and the re-
ceiver array had 144 phones. The signal waveform was a
linear FM pulse sweeping from 395 Hz to 400 Hz with a
rectangular envelope of duration 0.5 s. The repetition rate
of the pings was 60 s. The underwater platform moved at a
depth of 50 m.

Figure (3) shows histograms for a simulated platform
moving at a depth of 50 m. Three different SNR were used
(10, 15, and 20 dB). At all SNR shown, the depth estimate
is within 10 meters of the true depth, with a modest bias
which decreases as the SNR increases. Figure (4) shows
histograms for a target at a depth of 20 m (for SNR 20,
25, and 30 dB). For this depth, the distribution of the es-
timates shows two peaks — one peak at the correct depth of
20 meters, and a second peak at 26 meters. As the SNR in-
creases, the peak at 20 meters increases in height and the
peak at 26 meters decreases in height. There is a clear
depth-dependence shown in the histograms of figures (3)
and (4). In particular, the ML depth estimator seems to per-
form worse at shallower depths, requiring higher SNR to
get commensurate performance. Reference to figure (2) in-
dicates a possible reason for the observed difference in per-
formance. A target at a depth of 20 meters traps energy in
the surface duct, while a target at a depth of 50 meters does
not. Since the receiver array is below the surface duct (at a
depth of 70 meters), much deeper fading is witnessed when
the target is in the surface duct. Furthermore, the overall
SNR is defined to be numerically equal to the SNR of the
strongest ping obtained in the sequence of pings observed.
Therefore, the overall target strength (seen at the receiver)
for a fixed SNR is not constant with depth, leading to a
change in estimator performance as the depth is changed.

Figure (5) illustrates a simulation of the log-likelihood
surface described by equation (10) evolving over sixteen
pings for a depth of 50 m. Clearly, a single ping is not
sufficient to estimate the depth, but after five pings the ML
depth estimate converges to within two meters of the correct
depth. Furthermore, as the log-likelihood surface accumu-
lates in time, the ambiguity of the peak in the depth dimen-
sion decreases, which is indicative of improvement in the
estimate.

Figure (6) shows the time evolving log-likelihood sur-
face for real transponder data from the SWAC-3 experiment.

The transponder moved monotonically from 14 kmto 17 km
in range relative to the receiver in 16 minutes, and moved
from about 18 degrees to 15 degrees (relative to the receiver
array’s broad side) in the same time. The transponder depth
was 50 m, and additional uncorrelated noise was added to
the real data to achieve an SNR of 30 dB. Notice that the
ML depth estimate requires six pings to converge to within
one meter of the true depth. The ambiguities persist longer
than in the simulation, even though the SNR is higher. This
may be due to unresolved mismatch issues in the current
model, but this real-data result serves as validation of the
ML estimation technique described in this paper.

5. CONCLUSIONS

In this paper, a space-time matched-field maximum log-
likelihood estimate of target depth for active sonar was de-
veloped for multiple sonar pings. Through simulation it was
shown that, for the SWAC-3 environmental parameters and
a SNR of 20 dB, a depth estimate within 10 meters could
be achieved after relatively few sonar pings. Furthermore,
the ML depth estimator was successfully applied to real
transponder data gathered in the SWAC3 experiment, which
is a positive indication for the validity of the approach.

6. REFERENCES

[1] M. Papazoglou and J. Krolik, “Matched-field estima-
tion of aircraft altitude from multiple over-the-horizon
radar revisits,” IEEE Trans. on Signal Processing, vol.
47,no0. 4, Apr. 1999, pp 966-976.

[2] C. W. Therrien, Discrete Random Signals and Statisti-
cal Signal Processing, Prentice-Hall, Englewood Cliffs,
N7, 1992, pp 43-44.

[3] J. P. Hermand and W. 1. Roderick, “Acoustic mode-
based matched-filter processing for fading time-
dispersive ocean channels: Theory and experiment,” J.
Acoustical Soc. of Amer., vol. 94, no. 4, Oct. 1993, pp
445-64.

[4] T. C. Yang and T. W. Yates, “Scattering from an object
in a stratified medium II: Extraction of scattering signa-
ture,” J. Acoustical Soc. of Amer., vol. 96, no. 2, pt. 1,
Aug. 1994, pp 1020-31.

[5] H. Bucker, “Active matched-field tracking,” J. Acousti-
cal Soc. of Amer., vol. 99, no. 3, Mar. 1996, pp 1783-4.

99




-
N

£
>
o
c
@
=]
o
9_)

w

Amplitude (dB)

=01 <005 0 005 01 015 02 025 03 035 04
Normalized wavenumber (k*d*siné/x (dimensionless))

Figure 1. Frequency-wavenumber log-amplitude plots for
five transponder pings from the SWAC-3 data set. Notice
the rapid changes in the shape of the complex envelope as
the transponder moves about 800 m in 200 m steps.
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for SNR of 10, 15, and 20 dB. 100 random realizations were
used in each case. The true depth of the target was 50 m.
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Figure 4: Histogram approximation of the depth estimate
for SNR of 20, 25, and 30 dB. 100 random realizations were
used in each case. The true depth of the target was 20 m.
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Figure 5: Simulated log-likelihood surface evolving over
16 pings. The true depth is 50 m, and the estimated depth is
48 m after 16 pings. The SNR is 20 dB.
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ABSTRACT

In this paper we apply Adaptive Matched Field
Processing (AMFP) algorithms to passively detect and
localize a submerged source in a shallow water
environment in the presence of loud surface ship
interference. To achieve this goal, the capability of
AMFP is extended by applying a source motion
compensation algorithm and a time-varying spatial
filter that is used to remove the signature of a moving
surface ship. Construction of the spatial filter is
achieved using three alternate methods that utilize
either prior knowledge of the ship’s position or a data
estimation, or both. We present results from the data
obtained during the Santa Barbara Channel
Experiment (SBCX) that show the increase in SINR
that is achieved for a towed submerged source in the
presence of shipping noise with the application of these
techniques.

1. INTRODUCTION

Passive detection and localization of acoustic sources in
shallow water channels is complicated by channel-specific
multipath propagation. One method of addressing this
situation is to incorporate knowledge of the propagation
physics into the signal processing. Adaptive Matched
Field Processing (AMFP) utilizes the output of a
propagation model to form the steering vectors and
applies adaptivity to mitigate the high sidelobes present in
a conventional processor and to reject interference [1].
One limitation to this approach is the degradation due to
the motion of the target and interferers, which violates the
assumption of stationarity present in the covariance
estimation. The presence of target motion during the
observation period leads to smearing of the AMFP peak
and loss of signal energy. Movement of the interferer
during the observation period will spread the signature of
the interferer across the eigenvector spectrum of the
covariance matrix, and will consume adaptive degrees of
freedom (DOF) potentially preventing adequate nulling of
surface interference. Finally, large arrays typically require
increased observation intervals, and during these intervals
appreciable motion can occur. In addition, the motion is
greater relative to the fine localization peaks supplied by
large apertures, and this results in the most severe motion
effects.

In this paper we present techniques which can limit the
losses from both target and interference motion. We begin
by describing an AMFP architecture and the SBCX data
set. We then review a motion compensation algorithm [2]
that mitigates the degradation due to target motion. In
Section 3, we describe a time-varying spatial filter that is
applied to remove moving interferers.

2.  ADAPTIVE MATCHED FIELD
PROCESSING (AMFP)

Adaptive Matched Field Processing (AMFP) incorporates
knowledge of the propagation physics directly into the
signal processing by employing a propagation model to
construct the steering vectors (also called replica vectors)
[1]. With appropriate environmental knowledge and a
sufficiently rigorous propagation model, one can achieve
extremely fine localization accuracy by exploiting the
richness of the multipath. For the results in this paper, we
use the KRAKEN normal mode program [3] with an
adiabatic assumption to derive range dependent replica

vectors. Defining @ = (r,0,2) to denote the three-
dimensional spatial position in range, azimuth and depth,
the beamformer output steered to the direction ® can be

written as P(®) = w(®)? Kw(®) where w(®) is

the Nx1 weight vector, K is the NxN sample covariance
matrix formed from averaging L snapshots of data

n L
K=—1—Zx,x,H
L5

and x; is the pressure field observed across an N
hydrophone array at time t,.

For a conventional processor, the weights are normalized
replica vectors. Adaptive processing computes the weight
vector that is dependent on the sample covariance matrix
as well as the replica vector. For the AMFP results in this
paper we will use the Minimum Variance Distortionless
Response with diagonal loading (MVDR-DL) [4].

! This work was sponsored by DARPA under Air Force Contract F19628-95-C0002. Opinions, interpretations, conclusions
and recommendations are those of the author and are not necessarily endorsed by the United States Air Force.
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3.  SANTA BARBARA CHANNEL
EXPERIMENT (SBCX)

The SBCX experiment was conducted in April 1998 in the
200-m deep littoral waters of the Santa Barbara Channel.
One of the passive acoustic sensors deployed during the
experiment was a 150-hydrophone volumetric array called
the FFP array. For the results in this paper, we will use one
of the five 30-phone VLAs that comprised the FFP array.
The VLAs were instrumented for element localization.

One of the acoustic sources deployed during SBCX was a
J15-3 transducer that was towed by a research vessel, the
Acoustic Explorer (AX). It was used to generate a comb
sequence of 12 tones at approximately 159 dB re 1 pPa
source level. All the results shown in this paper are from
the comb sequence recorded on the FFP array during the
X2 exercise on April 11. The AX had an on-board GPS
receiver for position information and a radar station was
utilized to produce track information for surface vessels in
the SBCX area.

4. TARGET MOTION
COMPENSATION

The adaptive algorithm makes an implicit assumption that
the environment is stationary during the observation
period, and hence, assumes that neither the target
(submarine) nor the interference (surface ships) are
moving. In this section we consider the effect of the first
assumption and briefly discuss a method of source motion
compensation to address it. In the next section we examine
the effects of interference motion and present a method to
address it.

The change in target position over the observation time
results in a spread of the AMFP peak and a corresponding
loss of signal energy. This spread can be prevented by
adjusting the amplitude and phase across each data
snapshot so that the target appears stationary. The
adjustment is determined by applying a propagation model
to a velocity hypothesis for the target. The resulting
covariance matrix contains the signature of a target that
has been "focused" to a stationary position at a chosen
point; in this paper we use the position of the target at the
middle of the observation period as the focus point. A by-
product of the motion compensation is that sources
moving along other tracks are de-focused. Details of the
motion compensation algorithm are given in [2].

5. TIME-VARYING SPATIAL
INTERFERENCE FILTER

The primary source of low frequency noise (interference)
is from loud merchant ships that are prevalent in the
coastal regions. The strong signals from these ships can
leak through the sidelobes of the adaptive processor and
obscure the target peak. Typically, these ships have
appreciable movement during the observation interval, and
this spreads their signatures across the eigenvector
spectrum. The result is that the moving interferer
consumes adaptive DOF and thus the ability to null strong
interferers is limited. The number of adaptive DOF
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consumed by a moving interferer is roughly equivalent to
the number of resolution cells the interferer transits during
the observation time. Spatial resolution for MFP is
determined by the mode spread of the underwater channe],
and is about 10 X in range for SBCX.

One method of removing the interference is to explicitly
filter the data by projecting to a sub-space that is
orthogonal to the interference subspace. However, because
the interference is moving, the rank of its subspace over
the entire observation interval can be quite large and the
corresponding signal space will be limited. We propose to
increase the signal subspace by applying a time-varying
spatial filter for each data snapshot that only removes the
subspace for the interferer position at that time. The spatial
filter in constructed from the null space of the interference
subspace ‘¥. In [5] we proposed a model-based method of
interference removal. In this paper, we extend the
investigation by considering three methods of estimating
¥: model-based, data-based, and a hybrid method. For
each data snapshot, the spatial interference filter is applied
first, followed by the target motion compensation. The
resulting filtered and compensated snapshot is then used as
in (1) to estimate the data covariance matrix.

In the following subsections we describe the three
methods of estimating the interference subspace.

5.1 Model-based filter

Propagation

Ship position
model

r(t),2(6).(t)
Y 4

‘¥\(Model) = rank M subspace spanned
by replicas surrounding the ship position

The model-based method constructs a filter assuming
some prior knowledge of the ship's position is available,
An example might be the tracking of a merchant ship by
an airborne asset in the region. In order to estimate the
interference subspace, we utilize a propagation model to
determine the acoustic signature from an interference
source at the given position. To protect against
inaccuracies in the ship position, we compute the
interference subspace spanning a region in space centered
at the instantaneous position of the ship with some range
and depth padding. The amount of padding necessary is
determined by the accuracy of the prior knowledge. The
padding will also increase the size of the interference
subspace.

Even with this protection in place, the model-based
method is sensitive to inaccuracies in both the ship
position information and the propagation model

5.2 Data-based Filter

The data-based method constructs a filter by exploiting the
fact that the interference is strong and can thus be
estimated with a small number of snapshots J, which is
less than the total number of snapshots L. At each time t,




the interference subspace is computed by calculating a
covariance matrix with J snapshots centered on the lth
snapshot

I+

K= X ;X j
R 4
Jj=l-—
2
The M dominant eignevectors of this covariance matrix
are then used as an estimate for ‘.

Compute I’f
using J < L snapshots

v

Y\(Data) = subspace spanned
by first M eigenvectors

The data-based method has the advantage that it does not
depend on the accuracy of spatial knowledge or a
propagation model. However, surface ships that are
moving rapidly can still occupy several eigenvectors over
even a few snapshots. Furthermore, the target signature,
particularly if it is strong, can be erroneously included in
the interference subspace and fiitered out.

5.3 Hybrid Filter

The hybrid method attempts to combine the robustness of
the data-based approach with the use of prior knowledge
so that the eigenvectors pertaining to the interference and
the target can be distinguished.. To accomplish this, the
replica vectors v, m=1,2,...M that span the ship position
(section 5.1) are projected onto the subspace obtained by
data estimation (section 5.2). The interference subspace is
then made up of those replica vectors with significant
projection onto the data:

v, "W, (Data) > y

where v as an adjustable parameter representing the
minimum acceptable projection.

W,(Model) ¥ (Data)

Y y

¥ \(Hybrid) = retain the portion of
¥ (Model) which has a significant
projection on ¥,(Data)
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6. RESULTS

In this section we present results from the SBCX showing
the improvement obtained from applying interference
rejection and target motion compensation. Our results are
derived from a 200 sec section of data in which the
Acoustics Explorer (AX) was approximately 5.5
kilometers from the FFP array while a merchant ship was
operating in the Eastbound shipping lane, as shown in Fig.
1. At the hydrophone level, there is a significant amount of
noise from the surface ship in the lower frequencies (up to
~125 Hz) which masks the presence of the tones from the
AX comb sequence.

Surface
. Sh‘}j?ag .

N, L*. .Yr \I‘»}. %Y . .
0 1 2 3 4 5 6
X {km}
Fig. 1: Site plot showing the bathymetry contours in
the region of the FFP array along with the track of the
Acoustic Explorer and the track of the merchant ship.

As discussed in Section 5, the temporally varying position
of the ship will cause a spread of the ship's energy across
the eigenvector spectrum and a portion of this energy can
bleed through the sidelobes of the adaptive processor and
obscure target detection. This is case in the top-rleft
ambiguity surface in Fig. 2, which has been calculated for
the 94 Hz tone in the region of the range and at the
azimuth of the Acoustic Explorer (AX). There is poor
azimuthal discrimination for a single VLA (half power
beamwidths are about 65 degrees) because the horizontal
aperture is solely due to the 14-degree tilt of the VLA.
This allows a large amount of energy from the interference
to bleed through the sidelobes of the AMFP obscuring the
peak of the AX. As seen in the plot, the towed source is
not visible.

The plot in Fig. 2b shows the same data but with the
addition of target motion compensation. The motion
compensation serves to accumulate the source energy at
the focus position (5.4 km) while simultaneously de-
focusing any other sources moving with a different track,
such as the surface ship. However, this "de-focused" ship




energy appears as a higher background noise level and in
turn decreases the SINR.

The interference filtering described in Section 5 explicitly
removes the energy from the moving interferer and thus
prevents its effect on the sidelobes of the adaptive
processor. The results of applying a time-varying spatial
filter are shown in Fig. 2c-e. The plot in 2¢ shows the
result when a model-based filter (rank 7) is applied. For
the SBCX data set, the merchant ship position was
accurately determined by measurements from a radar
station, and the shallow water channel was well
characterized. Because of the accurate prior knowledge,
the model-based filtering successfully removed the energy
from the surface ship with a resultant SINR of 11.2 dB

The plots in Fig. 2d-e show the result when a data-based
filter is applied. Fig 2d was obtained by removing only the
largest eigenvector (rank 1 subspace) estimated from J=7
snapshots. In Fig 2e the top two eigenvectors (rank 2) are
removed. In neither case is the interference energy
completely removed, as seen from the high background
noise levels. This is because the rank of the estimated
interference subspace is not large enough. However, as the
size of the subspace is increased, the filtering begins to
remove the target energy, as seen in Fig. 2e. The data-
based filtering only gives information on the strength of
the sources, so if the target is fairly strong is can be
misinterpreted as a interferer and removed.

The final plot in Fig. 2f is the result of hybrid filtering.
The result is very similar to that in Fig 2c, indicating most
of the replica vectors in the model were a good
representation of the observed data.

7. CONCLUSIONS

In this paper we have addressed the effects of target and
interference ‘motion on the performance of an Adaptive
Matched Field Processor (AMFP). We have presented a
technique for explicitly removing the energy from a
moving interference source by applying a time-varying
spatial filter derived from prior knowledge. We have
presented results from the SBCX that show the increased
SINR obtained when the interference filter is applied in
conjunction with a motion compensation algorithm [2].

We have presented three types of filtering which rely upon
both model- and data-based estimation. The results shown
here are indicative of the scenario where the ship track and
channel are well-known, in which case the model-based
filtering is successful. Conversely, for the strong signal
case the data-based technique can remove target energy.
We should note that we have processed data where the
target energy was significantly weaker. In this case, a rank
2 data-based rejection performed very well. Further
investigation is needed to ascertain the sensitivity of these
techniques to errors in the propagation model,
environmental knowledge, or spatial resolution of the prior
knowledge.
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Fig. 2. Ambiguity surfaces calculated for the 94 Hz tone (SL=159 dB) at the bearing angle of the Acoustic
Explorer (109 deg). Position of towed source is 5.0-5.75 km in range and 30 m in depth. All surfaces are output of
MVDR with diagonal loading. Panels are as follows. a) AMFP surface with no target motion compensation or ship
filtering. b) AMFP with target motion compensation; SNR=7.5 dB. ¢) AMFP with model-based ship filtering
(rank 7) and target motion compensation; SNR=11.2 dB. d) AMFP with data-based ship filtering (rank 1) and
target motion compensation; SNR=6.3 dB. e¢) AMFP with data-based ship filtering (rank 2) and motion

compensation; SNR=5.4 dB. f) AMFP with hybrid ship filtering (y=0.6) and target motion compensation;
SNR=10.8 dB.
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ABSTRACT

Non-acoustic self-noise observed on passive sonar
towed arrays can impose serious limitations on the
detection and discrimination of acoustic signatures in
the very low frequency (VLF) acoustic band. Non-
acoustic self-noise consists of mechanically induced
vibrations, or cable strum, associated with vortex
shedding in hydrodynamic flow. This interference tends
to dominate the dynamic range of the lofargram display
used by the sonar analyst to classify signatures. A
beamspace adaptive sidelobe canceller architecture for
the coherent cancellation of non-acoustic self-noise is
presented. The approach is based on the recognition
that most vibrational modes of the array propagate at a
phase speed substantially less than that of acoustic
signals in the water column. This permits the formation
of an adaptive interference reference beam steered to
non-acoustic wavenumber space. The phenomenology
underlying the self-noise is discussed and characterized
using k- analysis. Adaptive cancellation results will be
presented for several hours of passive sonar towed
array data.

1. INTRODUCTION

Towed array self-noise can impose severe limitations on
passive sonar target detection at very low frequencies.
Self-noise is generally associated with mechanical
vibrations induced by hydrodynamic flow over the array
elements, or hydrophones, as the array is towed through
the medium [1]. The vibrations propagate as transverse
and longitudinal modes in the array body, much like a
vibrating string with fixed boundary conditions. The
vibrations produce local accelerations at each
hydrophone pressure head. The acoustic response
induced by this phenomenon can be several orders of
magnitude stronger that that of acoustic signals
propagating through the water column, dominating the

lofargram displays used by sonar analysts to identify
contacts.

Mechanical self-noise suppression techniques such as
vibration isolation and cable fairing are capable of
attenuating the propagation of vibrations in the array
body. Signal processing techniques such as noise
spectrum equalization are also employed to provide
some dynamic range compression at the display level.
However, this approach is an incoherent technique, i.e.
ignores phase, and thus comes at some cost to signal of
interest (SOI) detectability. In this paper, a technique is
presented which exploits phase and the propagation
physics underlying array-borne mechanical vibrations to
spatially reject this form of broadband interference.

2. CHARACTERIZATION OF TOWED
ARRAY SELF-NOISE

2.1 Self-noise mechanisms

There are three principal mechanisms responsible for the
generation of non-acoustic self-noise in towed arrays:
flow noise, own-ship machinery, and vortex shedding.
Flow noise is spatially isotropic with a spatial correlation
length that is very small compared with sensor spacing.
Linear beamforming is very effective at rejecting noise
of this type. Vibrations associated with own-ship
machinery represent a source of non-acoustic noise that
couples directly to the tow cable and the hydrophone
array. Most towed arrays are designed with vibration
isolation that attenuates such vibrations before they
propagate to the hydrophones. The third mechansim,
vortex shedding, results from the shedding of vortices
induced by hydrodynamic flow normal to the array axis.
Hydrophone outputs can be dominated by the local
accelerations resulting from transverse vibrations excited
by vortex shedding. Such vibrations propagate within the
array body at phase speeds substantially lower than that
of acoustic signals in the water column, generally in the
range 15 m/s to 1500 m/s. This physical property forms

Sponsored in part by PEO-USW ASTO, under Air Force Contract F19628-95-C-0002. Opinions, interpretations, conclusions, and recommendations are
those of the author and are not necessarily endorsed by the U.S. Air Force.
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the basis for the adaptive self-noise cancellation
architecture described in this work..

2.2 Vortex shedding

When an array is subject to hydrodynamic flow with a
component normal to its axis, a wake is formed. When
the velocity of the flow increases beyond a certain
threshold, eddies, or vortices, begin to form and separate
from the wake. Eventually these vortices shed from the
wake in an asymmetric fashion. This asymmetric
shedding imparts an oscillatory lift force locally on the
array which, depending on the properties of the array
such as tension and density, can excite transverse
vibrations which propagate along the array axis. The
frequency of vortex shedding in hydrodynamic flow is
related to properties of the flow and the array via the
empirically determined Strouhal relation [2]:

where S is the Strouhal number, equal to 0.21 in the
laminar flow regime characteristic of most towed array
environments, v is the velocity of flow normal to the
array axis, and d is the cable diameter. Note that the
normal component of velocity of flow can vary with
time in response to platform motion and local
inhomogeneities in the turbulent medium.

The transfer function to which the Strouhal excitation is
applied is governed by the wave equation subject to the
boundary conditions of the array under tow. For
example, assuming fixed boundary conditions for the
array, the preferred frequencies of vibration or modes of
the array corresponding to the solution of the wave
equation is given by:

n T

I =i m

>

c

where T is cable tension, m, is mass per unit length of
the cable, and L is the cable length. Figure 1 depicts
notionally the interaction of the Strouhal excitation with
the structural modes of the array. Cable strum due to
vortex shedding is strongly excited when the Strouhal
excitation frequency is closely aligned with a resonant
mode of the cable transfer function.

2.3 Wavenumber-frequency analysis

The decomposition of an array snapshot into its
constituent acoustic and non-acoustic components is
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accomplished using a wavenumber-frequency, or k-w,
transform. The k- transform is a 2-d FFT in space and
time. Maximum unambiguous wavenumber resolvable is
equal to n/d, where d is the sensor spacing. Resolution in
wavenumber is governed by the aperture length, L. For
non-dispersive propagation, frequency and wavenumber
are linearly related via

2
€p

k(f)=

where ¢, equals the phase speed of the wavefront.

Figures 2 and 3 depict k-o plots for the two towed arrays
that form the basis for this study. The arrays differ in a
number of ways including aperture length, number of
hydrophones, spatial sampling interval, cross-section,
and the degree of mechanical vibration isolation
employed. The k-@ plot associated with the first array
exhibits much superior resolution relative to that of the
second, due to its greater length and number and density
of hydrophones. In each figure, the water-borne acoustic
cone is delineated by the innermost pair of black lines.
These lines intersect at coordinates (k,») equal to (0,0).
For non-dispersive propagation, wavenumber and
frequency are linearly related via the phase speed of the
wavefront.  Thus, signals propagating in the water
column at or near 1478 m/s, the nominal speed of sound
in water, are constrained to lie along lines within the
water-borne acoustic cone. Higher wavenumber modes
associated with vibrations, or non-acoustic signals,
propagating at lower phase speeds fall outside the
acoustic cone.

Figure 2 clearly depicts two discrete vibrational modes
with phase speeds of 15 m/s and 700 m/s, respectively,
occurring in the long aperture array at the onset of a turn.
Observe that there is good separation between these
modes and the acoustic cone. There is some sidelobe
penetration into the acoustic cone of energy from these
modes, but it is relatively weak. Figure 3, on the other
hand, depicts a much different situation for the short
aperture array. A vibrational mode is observed to reside
just outside the acoustic cone, at a phase speed of
approximately 1000 m/s. The poor separation means
significant mainlobe leakage of the non-acoustic
interference into forward endfire, in addition to the usual
sidelobe leakage which typically penetrates all of bearing
space. Mainlobe and sidelobe leakage of mechanical
vibrations into the water-borne acoustic cone is the
principal mechanism whereby non-acoustic noise
impacts noise levels in beamformed towed array data.




3. ADAPTIVE CANCELLATION
ARCHITECTURE

3.1 Reference isolation

The adaptive approach adopted in this work is based on a
time-domain adaptive sidelobe canceller, first proposed
in the mid-1960’s by Widrow [3]. A block diagram of
the algorithm is shown in Figure 4. The key to this
approach presented herein lies in the formation of the
interference reference. Recognizing from the k-
analysis that the mechanical vibrations propagate at sub-
acoustic phase speeds, it is clear that a signal-free
interference reference is available by steering a beam
into non-acoustic k-o space. The k-o plot in the block
diagram of Figure 4 illustrates the placement of a
candidate reference beam for the short aperture array.

3.2 LMS Tapped Delay Line Filter

The adaptive filter implementation consists of a tapped
delay line with filter weights updated via least-mean-
square (LMS) algorithm. The number of delay line taps
is a function of the interference bandwidth and the
sample rate of the time series. The adaptivity coefficient,
W, is inversely related to the sum of the power in the
filter taps. For this problem, these parameters were
empirically tuned to yield a misadjustment level, or ratio
of excess mean-squared-error to minimum mean-
squared-error, of 0.05, and a convergence time of
approximately 2 minutes.

3.3 Robustness to signal self-cancellation

In the formation of an interference reference, the
potential for signal of interest to contaminate the
reference channel is clearly of concem. In the case of a
reference beam steered to non-acoustic space, this
potential can be quantified by considering the phase
speed dependence of the array beampattern. Figure 5
depicts a plot of the beampattern versus phase speed for
a frequency within the bandwidth of the cable strum
interference. At this frequency, acoustic signals
propagating at 1478 m/s in the water column will
contribute to the non-acoustic reference via the first
sidelobe at —13 dB. This level of rejection is generally
sufficient to prevent SOI cancellation of most quiet
targets.

4. TOWED ARRAY DATA RESULTS
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Figure 6(a) shows a plot of the coherence between
primary and reference channels for an 8 minute snapshot
of data from the short aperture array. The coherence is
defined as the normalized cross-spectrum, or

Py (f)
| Po (N2 P (N2

For interference cancellation to be supported, there must
be significant coherence between the interference as
sampled by the reference channel and the manifestation
of . the interference in the primary, in this case the
forward endfire acoustic beam. From Figure 6(a) it is
seen that coherence is nearly perfect over the bandwidth
of the cable strum, 0 to fs/4. An additional measure of
expected cancellation performance is represented by the
cancellation ratio, CR, which is a function of the
coherence spectrum given by,

1
-1 Coy (NP

The cancellation ratio supported by the coherence
spectrum shown in Figure 6(a) ranges from 15 to 30 dB
over the bandwidth of the cable strum interference.

Cy(f)=

CR(f) =

Figure 6(b) depicts a time slice of the power spectrum
for the short aperture array data corresponding to Figure
6(a). The power spectrum density (PSD) of the forward
endfire acoustic beam is plotted both before and after the
adaptive strum cancellation algorithm. It is seen that over
the portion of the spectrum where the cancellation ratio
predicted a 15-30 dB reduction in the cable strum noise
floor, the PSD noise floor after strum cancellation is in
fact decreased by a corresponding magnitude. Observe
that a narrowband signal at frequency 3fs/64, detectable
in the post-cancellation PSD, was completely buried in
the self-noise floor prior to applying the adaptive
sidelobe canceller algorithm.

5. CONCLUSIONS

An approach has been presented for cable strum self-
noise suppression based on an adaptive sidelobe
canceller architecture. The key feature of this approach
lies in the formation of the interference reference by
steering a beam to non-acoustic k-@ space. Towed array
data examples show that the approach is capable of
coherently rejecting cable strum in towed array data by
as much as 15 to 30 dB.
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Figure 2 Frequency-wavenumber plot for long-aperture
array during onset of own-ship turn. Discrete array
structural modes are clearly observed at 15 m/s and 700 m/s
phase speed. Some sidelobe leakage into acoustic cone is
apparent.
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Figure 1 Notional depiction of time varying Strouhal excitation and array
vibrational modes.
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Figure 3 Frequency-wavenumber plot for short-aperture
array during straight tow. A cable mode exists just outside
the acoustic cone at 1000 m/s. Significant mainlobe and
sidelobe leakage into the acoustic cone at forward endfire is
observed.
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Figure 6 (a) Coherence between primary and reference channel, (b) PSD before and after strum
cancellation. Adaptive strum canceller decreases cable strum-induced noise floor by as much as
15 to 30 dB. Note narrowband signal at 3f/64, buried in noise floor in the original PSD, is
detectable in post-cancellation PSD.
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ABSTRACT

A multiple target track estimation method which operates
directly from array data is presented. The Maximum A-
Posteriori (MAP) estimator for contact states is derived for
temporally uncorrelated signals and uncorrelated contact
tracks. This batch estimator is an iterative algorithm em-
ploying a nested pair of Expectation Maximization (EM)
based algorithms. The hidden data are intermediate direc-
tion finding estimates of synthetic signal estimates, each
conditioned on prior track distributions. This method elim-
inates the data association step of traditional mulfitarget
tracking approaches by conditioning the measurement pro-
cess on individual target state distributions. This approach
results in a process similar to the EM algorithm for direc-
tion finding by Miller and Fuhrmann, with an additional
penalty term imposed by the track distributions. Simula-
tion results for two relevant submarine towed array sce-
narios are presented and discussed.

1. INTRODUCTION

An important and pervasive problem in the engineering of
sensor systems is the detection and tracking of multiple con-
tacts through observations made from an array of sensors.
An optimal approach would estimate the tracks of objects
directly from the array snapshot data, however the solution
to this estimation problem is quite difficult.

Traditional solutions partition the track estimation oper-
ation into two isolated processes: direction-of-arrival (DOA)
estimation from array snapshot data, followed by track es-
timation from the DOA estimates. This partitioning results
in procedures which are suboptimal and which require data
association to match DOA estimates to contacts. Many ap-
proaches have been offered to solve the data association
problem [1], however it continues to be a significant area
of research and can be a major contributor to poor system
performance.

In {2], a Maximum A-Posteriori (MAP) solution for es-
timating the target states directly from the array data was

The authors would like to thank the Department of the Navy's Program
Executive Office for Undersea Warfare, Advanced Systems and Technol-
ogy Office (PEO(USW) ASTO) for the support provided for this effort.
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proposed. This approach discretizes the target state space
and employs a Viterbi algorithm for determining the optimal
state sequences. It provides an elegant but computationally
expensive solution.

In this paper we will develop an efficient MAP estima-
tion technique for determining the tracks of multiple objects
without a discrete state space approach. We take the ap-
proach of introducing ‘hidden data’ as in the Expectation-
Maximization (EM) [3] and Space Alternating Generalized
EM (SAGE) [4] algorithms. This allows us to develop an
iterative procedure for estimating the target states and pro-
vides a mechanism to control the trade- off between conver-
gence rate and estimation error.

The paper is organized as follows. In Section 2, the sig-
nal and motion model is formulated and the joint pdf for the
multitarget tracking problem is specified. In Section 3.1, a
solution for the single target case is developed, and in Sec-
tion 3.2 the concept is extended to multiple targets. Simu-
lation results are presented in Section 4, and a summary is
given in Section 5.

2. STATISTICAL MODEL AND ASSUMPTIONS

We consider the multitarget tracking problem where there
are M contacts radiating signals received by an array of sen-
sors. The number of objects M is assumed known and the
trajectories of the objects are uncorrelated with the trajec-
tories of other objects. We assume for simplicity the tar-
gets and the array lie in the z — y plane, and that the ar-
ray is linear, although we can easily extend the results to
other geometries. This is illustrated in Figure 1. The 2-
dimensional state is defined as its bearing u = cos(f) and
bearing rate . Thus the state of the m¢h contact at snapshot
kis Xg.m = [Uk,m,Uk,m)’. We assume the motion of the
objects is described by a first order Gauss-Markov process,
i.e. for the mth contact,

Xkm = FXpo1,m + Wim (€))
where F = [(1) tlk] , tg is the time interval from kto k + 1,

and wy, r, is a zero mean white Gaussian noise process with
covariance Q which is assumed known and fixed over the
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Figure 1: Array Observation Geometry

observation period and equal for all objects. Under these
assumptions, the pdf of Xk,m giVeNn Xg_1 m is

1
O(Xie,m|Xkm1,m) = — e 2
27 det [Q]?

1
exp (—§(Xk,m = Fxto1,m)T Q™ (%kym — ka—lvm)) :

At the array, the observations have the form

M
Ye =D SkmV(Upm) + np ®

m=1

where si m is the frequency domain signal from the mth
object at the kth snapshot with E[sk,ms,’;"m] = Qg,m. The
vector v(ug,.,) is the array response vector for the DOA
Uk,m, and n;, is a vector of uncorrelated sensor noise sam-
ples. The source signals and noise are sample functions of
independent zero-mean Gaussian random processes. The
signal powers, Ok, m, are time varying and the noise covari-
ance matrix is constant with E[ngnf] = o21. Let X =
(Xk,1%E 2, X0, m0]T and o = [0k, 2, - - i ]
The array data y; is then jointly complex Gaussian with
zero mean and covariance

M
Kyi(Xi, o) =Y 0 mv{wg,m) v (we,m) + 021 (4)

m=1
The pdf of the array data conditioned on the target states is

exp (—-yfK N (X, ar)yk)

PYelXy s o) = —% det Ky, Xp,an)] O

Note that the array data depends on the target state x4 ,,
only through the bearing Uk,m and not the bearing rate Uk, m.
We will use both Xk,m and ug , to denote bearing as nec-
essary in the subsequent derivation in order to reduce nota-
tional complexity.
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The single scan joint pdf conditioned on the previous
contact state is

T(Vk, X Xp—1 ) =
M
PyelXe s e) ] ok mlxez1m).  (6)

m=1

There are K snapshots in an observation batch. No data is
available at £ = 0 so we assume a Gaussian prior distribu-
tion on object states with mean Xo,m and covariance Po,m.
The joint pdf over the batch is

M
T(Y,X:a) =[] o(xo,) o )
K = M
{HP(YkIXk o) [ (P(xk,m|xk—l,m)}
k=1 m=1

where Y = {y;,...,yx}, X = [Xi,...,Xk], and
a=[o,...,ak).

3. MAP ESTIMATOR DEVELOPMENT

Traditional calculus based optimization is not a tractable
approach and a brute force Newton type algorithm for the
maximization of Eq. (7) has difficulties from both an ana-
lytic and an implementation perspective as discussed in [5].
An exact solution under a discrete state space model is pro-
vided by [2], however it is computationally very expensive.
What is desired is a solution which provides a tractable and
efficient algorithm.

Nonlinear programming methods {6] such as relaxation
and auxiliary penalty functions solve optimization problems
iteratively by finding the solution to an approximated prob-
lem and successively force the approximation and the origi-
nal problem to converge with each iteration. We use a simi-
lar approach. Assume we have an ‘observation error’ at the
array. We can model the ‘observed’ DOA as

Bkm = Uk,m + €k m ¥

where p(ex,m) = N (0, 02

YV ek,m

), therefore

P(pk,m|Xk,m) = N(“k,m,azk'm)- 9

Accounting for this error term, the observed array data is
then given by (3) with Ug,m Teplaced px ., and the pdf of
the array data conditioned on the corrupted observation of
target states is

exp (~yF K7 (g, ax)y)
N det [Ky, (g, 0x)]

P(Yrlpy s ap) = (10)




where g = [pr1, .- -, #e,m)T. The modified single scan

joint pdf is

T (Vs b, Xp|Xi—1 : Q)
= p(Yeltr, Xiey Xi—1,: 0)p(tg, Xe|Xp-1) (A1)
M
= p(yelig : k) [] (k! %k,m)o(Xkm [Xk-1,m).-

m=1

and the modified joint batch pdf is
M
T(Y,MX:a) =[] oxo) (12)
v=1

K M
{ I pwilese i) T] p(uk,mlx;c,m)w(xk,mka_l,m)} ;

k=1 m=1

where M = [u,, ..., ux]. While on the surface it appears
we have complicated the problem, this formulation will al-
low us to develop an iterative procedure for estimating M
and X.

In the limit as the ‘observation error’ variance goes to
zero we have p(p, |x; ) taking on the behavior of a Test Se-
quence. By initially assuming a large error variance and
successively reducing it with every iteration cycle, we re-
cover the original problem. This provides a mechanism to
contro] the trade off between convergence rate and estima-
tion error.

This auxiliary ‘observation error’ has a real physical
counterpart. In all real systems we employ physical de-
vices which are subject to error as well as observe energy
through a propagation channel with random fluctuation. In
these systems, particularly towed hydro-acoustic arrays, this
error manifests itself as minor propagation fluctuation and
random array orientation error. By treating this error term
up front, we get the same structure as in Eq. (12).

3.1. Single Signal MAP Estimator

Considering only a single signal we drop the notation on m
and Eq. (12) becomes

p(Y,u,X:a) =

K
o(x0) [T p(yelme : cx)p(ps|xe)o(xilxe-1). (13)
k=1

For a fixed p and o, the MAP estimator of X is now the
the fixed interval Kalman smoother. On the other hand, for
a fixed X, we can solve for both g and o using Maximum
Likelihood Estimation (MLE) techniques from array pro-
cess where an additional ‘penalty’ term is imposed due to
P(p|xx)-

Eq. (13) is of an identical form used by the SAGE algo-
rithm [4]. It is shown in [4] that if the observed data (y), the
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hidden data (u), and the non-random parameters of interest
(6) are related as follows,

Fy, 1;0) = fylw) f(1; 6), (14)

then (y, u) is an Admissible Complete-Data Space for the
estimation of 6. Since we are interested in MAP estima-
tion, § is a random parameter. The requirement for MAP
estimation can be restated as

f(y, 1,60) = f(ylu) f(16)5(6)- (15)

Eq. (13) is of the form of (15) for an admissible hidden
data space, with the noisy bearing vector & behaving as the
hidden data. Since our form and the required SAGE form
are equivalent, we will borrow from the SAGE theory for its
convergence proof as well as the optimization technique to
construct a MAP estimation algorithm.

A detailed development of the algorithm is presented
in [5] and the results are summarized here. The algorithm
is initialized by defining an initial track and signal power
in the vicinity of their true values. The observation error
variance is initially set to the Cramér-Rao Bound [8] and
reduced at every iteration. This ensures that the estimation
error introduced by the ‘observation error’ is significantly
less than the inherent resolution of the array. The Algorithm
consists of the Expectation (E) Step and the Maximization
(M) step as follows:

e E-Step: Estimate p} foreachk = 1,...,K by finding

H
argmax v (p)Cy, (1)
#i = —In [ NYk
v (u)C —uf™t)?
+ (#J)VUy;v(u) _ (”2a2k ) a6
n €k,m

where Cy, = yryf. The error variance is set to
02, .. = € - 0&gp,, Where € is a scaling param-
eter chosen for convergence properties and 0% pp,
is the Cramér-Rao Bound evaluated at the estimated
bearing ui-l and power ai'l from the previous it-
eration. The E-Step is in fact a Penalized Maximum
Likelihood Estimate (PMLE) of the noisy bearing u,
where the penalty term is based on the relationship of
U to the true bearing uy, through the ‘observation er-

»

ror’.
¢ M-Step:

-~ Part I: Compute o by

_ 1 (vPWRCyv(ed) _ »
az—max[-ﬁ( N —an>,0].

an




~ Part II: Compute X using the u? as the ‘state
measurements’ and €” - % as their variances
in a fixed interval Kalman smoother.

The M-Step produces PMLEs of o and a MAP
estimate of the states x;, via the Kalman smoother.

e Incrementp = p'+ 1 and iterate.

We carry out these steps for a prescribed number of itera-
tions and accept the final value as the MAP estimate.

3.2. Multiple Signal MAP Estimator

To extend this idea we need only to consider the idea of nest-
ing an EM Algorithm within the single signal MAP estima-
tor algorithm. If we could separate the mixed observed sig-
nalsinY into M distinct signals Z,, where Y = Zf,f___l Z .,
we would have all we need to solve the multiple contact
problem. Since we have assumed contacts with uncorre-
lated signals we can employ the technique of Miller and
Fuhrmann in (7] to synthesize M single signals from the
mixed data in Y. At each scan we then have the stan-
dard EM Algorithm for direction finding, modified with the
quadratic penalty term. There are then M x K estimates to
form and M fixed interval Kalman smoothers in parallel for
every iteration. The extension of the single si gnal algorithm
to multiple signals results in the following algorithm.

e E-Steps:

KPP

Zk,m

2
= oIV IV (e )+ 52T (19)

,m km k,m
M
K =3 oKe,
m=1
Ry, = E[R,, . [Cy., KEY]
=Ko (K57 Cy, (KR TIKE?

P9 _ KPY P9\~ 1§ P,q
+sz.m sz,m(K}'k) sz,m

(19)

(20)

pg _ aTgmax VH(#)R’Z’;?MV(M)
#k,m - @ N

2D

LMV GRzg v (w- k)

2 2
No2 20%".

s 2 — P . 52
where again Tecm =€ "OCRB, .-

e M-Step, Part I:
ai:‘fn = (22)

[1 (V”(uij‘fn)R’z’;?mV(uZ:%) a,%) ]
max ~ ,01.

N M

Increment ¢ = ¢ + 1 and iterate.
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e M-Step, Part I: Compute X? with M independent
fixed interval Kalman smoothers using M and the as-
sociated variances. Increment p = p + 1 and iterate.

The iterations may be performed for fixed number of cycles
or until some convergence criterion is reached. The trade-
off is algorithm complexity vs. estimation accuracy. Simi-
larly, the choice of the reduction schedule for €? represents
a tradeoff between convergence speed and estimation accu-
racy. One possibility is to set €? = ne?~! where 0 < 7 < 1.
In explicit pseudo-code form, the algorithm is:

Initialize of ., X} m VE,m
forp=1,... y Praz
€? = ple-1)
fork=1,...,K
Update/Reduce ‘Observation Error’ Variance
Ty =CRB(X? ™, a2™)[8]
a2, .. =€ - Ty(m,m) Vm
Update Bearing and Power Estimates
Initialize pf> = uf! Ym
Initialize o}, = o 19me= v
forg=1,...,qmas
Compute KE:¢ Vm {Eq. (18)}

Compute K2:¢ {Eq. (19)}
form=1,..., M
Compute RZ¢ ~ {Eq. (20)}
Find uf0, {Eq. 21)}
Compute o7 {Eq. 22)}
end {m}
end {q}
end {k}
Update State Estimates (H = [1 0])

form=1,...,. M )
Initialize bg'o = Xo,m, PO]O =Pom
Forward Kalman Filter
fork=1,...,K
Pyp-1 =FP;_ 1, FT + Q :
Wi =Py HT {HPy,  HT +02, )
Pur = Prp—r — WiHPy,
by =Fbr_1 x-1 + W, {uﬁjﬁn - HFbIc—1|k—l}
end {k}
Backward Kalman Smoother

Set lezi,m = b)cl)c
fork=K-1,...,1

G= Pk,kFTP;i”k
Xem = bije + G, -~ Fbyy,]
end {k}
end {m}
end {p}.




The algorithm must be initialized in the vicinity of the true
tracks. An initialization process is developed in [5]} which
estimates the number of targets and their initial tracks. The
algorithm has a great intuitive appeal in that given an as-
sumed track for each contact, we decompose the array data
into the M synthetic signal covariances for each snapshot,
find their directions constrained to the neighborhood of the
current track, and then adjust the current track estimate to
satisfy a weighted least squares criterion (the fixed inter-
val Kalman smoother). We repeat the process and at every
iteration we enforce a stricter relationship between the ‘ob-
served’ DOA and the estimated track.

The outstanding feature of this approach is that the asso-
ciation of the measurements to tracks is implicit since each
measurement is conditioned, via the Gaussian penalty term,
on its track. This provides a near optimal measurement for
each track.

4. RESULTS

Two simulated scenarios were used to develop and test the
algorithm. An array of 10 elements is used. Contact pa-
rameters are summarized for both scenarios in Tables 1 and
2. In scenario 1, the *Target’ starts as the left-most trace in
Figure 2(a), Interferer 3 is the next trace to the right, then
Interferer 2 and then Interferer 1. In scenario 2, Interferer 3
starts as the left most trace in Figure 3(a), then the Target is
the next trace to the right, then Interferer 2 and then Inter-
ferer 1. In the simulations, a fixed number of iterations was

Table 1: Parameters for Scenario 1
Contact SNR RMSE

Target -7dB | 2.56-10~2
Interferer 1 | 0dB | 6.10-1073
Interferer2 | -7dB | 8.99.10-3
Interferer 3 | 0dB | 4.85-1073

Table 2: Parameters for Scenario 2
Contact SNR RMSE

Target -10dB | 2.45-1072
Interferer 1 | 0dB | 5.62-1073
Interferer 2 | -10dB | 2.94 - 102
Interferer3 | 0dB | 3.76-1073

used with ppa. = 10 and g = 5. The error reduction
parameter was set to 7 = 0.1. Figures 2(a) and 3(a) show
the true paths of the contacts summarized in Tables 1 and
2 as they move through the observation space. Figures 2(b)
and 3(b) show the true tracks (marked with the tick marks)
and the estimated tracks (lines) after 10 iterations overlaid
on the data.
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The results were compared to the discrete state space
(DSS) technique proposed in [2]. This required develop-
ing a straightforward extension of their algorithm to the
stochastic signal model used here. Table 3 shows the es-
timation accuracy performance of the two algorithms. Both
algorithms were initialized with the same information and
great care was taken to tune the algorithm of [2] to the data
and to make it as computationally efficient as possible. Our

Table 3: Continuous State Space (CSS) vs. Frenkel and
Feder Discrete State Space (DSS) Algorithm for Scenario 1

Cntct | RMSEDSS | RMSE CSS | #i7aplss
Target | 5.32-102 | 2.56-1072 |  2.09
Intf1 | 11.2-107% | 6.10-1073 1.84
Intf2 | 1.03-10~2 | 8.99-1073 1.15
Intf3 | 6.90-10~3% | 4.85-10°% 1.42

continuous state space (CSS) technique out-performed the
discrete state space algorithm of [2] from both an RMS Er-
ror perspective and in computational complexity. The ex-
ecution time for the CSS algorithm was about 4 minutes,
while the execution time for the DSS algorithm was approx-
imately 20 hours. These times were on a SSOMHz Dell PC
using MATLAB® v5 3.

5. CONCLUSIONS

We have developed an efficient algorithm for the MAP es-
timation of multiple contact tracks. To construct this al-
gorithm we introduced an observation error to decouple the
Gauss-Markov motion model and the array data model. Con-
vergence of the artificial problem to the original problem
was enforced through the reduction of the ‘observation er-
ror’ variance with each iteration. The single target solution
was extended to multiple targets by using the decomposition
capabilities of the EM algorithm developed in {7] to break
the problem into M single target problems.

The algorithm performed very well. In addition to accu-
racy, the convergence rate was quite good. The algorithm
provides a substantial reduction in computation to a dis-
crete state space solution while also decreasing the RMS
error. A sequential version for real-time estimates, and a
beamspace formulation for computational considerations,
are developed and discussed in [5]. The sequential version
is presented in [9].
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